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Abstract
The selection of an appropriate global transfer function is essential for visualizing time-varying simulation data.
This is especially challenging when the global data range is not known in advance, as is often the case in remote
and in-situ visualization settings. Since the data range may vary dramatically as the simulation progresses, vol-
ume rendering using local transfer functions may not be coherent for alltime steps. We present an exploratory
technique that enables coherent classi�cation of time-varying volume data. Unlike previous approaches, which
require pre-processing of all time steps, our approach lets the user explore the transfer function space without
accessing the original 3D data. This is useful for interactive visualization, and absolutely essential for in-situ
visualization, where the entire simulation data range is not known in advance. Our approach generates a compact
representation of each time step at rendering time in the form of ray attenuation functions, which are used for
subsequent operations on the opacity and color mappings. The presented approach offers interactive exploration
of time-varying simulation data that alleviates the cost associated with reloading and caching large data sets.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

One of the main challenges in applying direct volume ren-
dering to time-varying data is the selection of an appropri-
ate global transfer function. One of the desired properties
of such a transfer function iscoherenceor consistency. A
transfer function is coherent when the same ranges in a data
set are assigned the same colors throughout the entire se-
quence. Coherent visualization of time-varying data is cru-
cial for ensuring correct interpretation of rendered images.
As a sequence progresses, however, the data range may vary
dramatically between time steps. Thus, renderings generated
with local transfer functions may be colored inconsistently.
To avoid this problem, it is necessary to know the global
data range a priori, or compute it by traversing the sequence
in advance. Then, all time steps can be visualized coher-
ently with the same global transfer function. For large time-
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varying data sets, it may be impractical to pre-process all
time steps in advance. Moreover, in remote and in situ visu-
alization scenarios, this is not a plausible solution.

We present a technique for exploring the transfer func-
tion space of time-varying volume data in a coherent manner.
Using this technique, time-varying volume data can be pro-
cessed in a single pass. As we render each time step, using
a local transfer function, we generate a compact represen-
tation of a volume, that allows us to later explore different
opacity and color mappings without accessing the original
3D data. This representation is much smaller than the orig-
inal volume data and can �t into system memory. After the
time steps have been loaded and rendered, the user can as-
sign a global transfer function and see it applied coherently
to the entire sequence. Consider Fig.1, where we visualize
an argon bubble-shockwave interaction simulation. If we ap-
ply a local transfer function to each time step, the results are
incoherent. Values with the same hue in an earlier time step
do not correspond to values with the same hue in later time
steps. For example, we do not see the expected dissipation
of gas. In contrast, the global transfer function, as shown in
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Figure 1: Coherent Visualization of an argon bubble-shockwave interaction. (a)Three time steps rendered using a local transfer
function. Although a local transfer function enhances different structures, they are not coherent, as values depicted in red do
not necessarily correspond to the same values in all three time steps. Thisis misleading to the scientist. (b) The global transfer
function provides a coherent visualization, as seen in the apparent dissipation of the gas bubble. Obtaining such result requires
another complete traversal of the full simulation sequence. (c) With our approach, we remap the results in (a) to the global
transfer function without the need to access the volume data. Compare to (b)for accuracy. (d) In addition, the scientist might
adjust the global color map to bring out the ring details in the third time step. Other time steps can be re-adjusted with little
cost.Ray Attenuation Functions :For the time step in second column, we show a 16-bin ray attenuation function for a given
pixel as a logarithmic bar chart. In (b), we see that the attenuation function isa rescaled and biased version of the function in
(a). This transformation is more clear when we see the attenuation function discretized in 32 bins. (c) We exploit this behavior
to remap the attenuation function from (a) to the global range. Compare this histogram to the actual 32-bin function in (b).

Fig. 1(b), shows a coherent visualization. Now, hues corre-
spond to the same values throughout the simulation. Obtain-
ing these results, however, requires reloading each time step.
In Fig. 1(c), we obtain a coherent visualization using our ap-
proach, based on the information gathered locally.

Our technique enables the user to achieve a globally co-
herent visualization of a time-varying data set after rendering
each time step independently using a local transfer function.
The user may change the color and opacity mappings to ex-
plore the data or to highlight features of interest. None of
these operations requires access to the original volume data.
Since we can inexpensively apply the changes to all time
steps, changes to the color and opacity mappings can be vi-
sualized coherently throughout the entire sequence at inter-
active rates. For example, in Fig.1(d) we modify the global
transfer function to highlight the ring of argon gas. The

changes are coherently applied to earlier time steps without
accessing the original 3D data.

To be practical for interactive exploration, a volume rep-
resentation should be as small as possible. One option is to
simply cache a volume rendered image for each time step.
Ignoring compression, a single image constitutes the small-
est unit of information that can be stored. However, such im-
ages do not provide the ability to change the color or opac-
ity of features to achieve coherent visualization. Instead, we
show that volume rendered images can be decomposed into
a linear combination of colors, weighted by the total atten-
uation of each intensity value. This accumulated attenuation
shows the distribution of attenuation along a ray with re-
spect to intensity values, as seen in the bar chart inset in
Fig. 1(middle column). In this paper, we show that coher-
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ent visualization and transfer function operations such as re-
coloring or opacity tuning can be achieved as a result of op-
erations on these functions. The accuracy of reconstruction
using these functions naturally depends on their resolution.
We show that 16-value functions (equivalent to storing four
RGBA images) are compact enough for interactive explo-
ration and provide accurate results for complex data sets.
Through a visual and quantitative evaluation, we show that
our approach is an ef�cient exploratory technique for visu-
alizing time-varying volume data.

2. Related Work

Time-varying Volume Data. Despite the advances in ren-
dering static volume data sets, the visualization of time-
varying volume data remains a dif�cult challenge. Several
strategies have been developed to deal with I/O bottlenecks,
including compression [GS01, LMC01, BCF03], multi-
resolution analysis and partitioning structures [SCM99],
and differential encoding [SJ94]. Gao et al. speed up
the rendering of time steps using visibility culling and
temporal coherence [GSHK04]. De�ning coherent trans-
fer functions for time-varying volume data is still a chal-
lenge, despite the advances made for time-invariant vol-
ume data [PLB� 01], which include the spatial derivatives
of the data [KD98], the contour spectrum [BPS97], multi-
dimensional spaces [KKH01], and stochastic search in im-
age space [HHKP96,MAB � 97]. On one hand, transfer func-
tions must include the temporal behavior of the data, which
may be periodic, regular or random. On the other hand,
transfer functions must be temporally coherent. Otherwise,
colors may be misleading or physically meaningless. These
problems are described in detail by Jankun-Kelly and Ma
[JKM01]. To address these problems, Kosara et al. suggest
the time histogram as a 2D or 3D space to classify time-
varying data [KBH04]. Akiba et al. [AFM06] extends a sim-
ilar space with equivalence classes to handle multiple time
steps simultaneously. Younesy et al. proposed the Differen-
tial Time-Histogram Table [YMC05], which exploits tempo-
ral consistency to extend the time histogram with differential
encoding. Wang et al. [WYM08] enhance time-histograms
with importance curves that highlight regions with differ-
ent temporal trends. Woodring et al. [WWS03] consider
the time-varying data as a four-dimensional �eld. Hyper-
planes in this space highlight different temporal structures
in the data. Park et al. use multidimensional transfer func-
tions to highlight different properties of time-varying �ow
data [PBL� 04]. Other approaches include temporal cluster-
ing and sequencing [WS09], and machine learning [TM05].
In all these cases, however, the volume data must be pre-
processed in its entirety before classi�cation. In our ap-
proach, we provide a technique that does not require the
knowledge of the global data range a priori, which is essen-
tial for remote and in-situ visualization scenarios.

View-dependent Visualization. Although visualization
involves rotation and zooming, operations such as trans-

fer function design are usually performed while the view is
�xed. Several exploratory techniques exploit this fact: opac-
ity [RSK06] and feature peeling [MMG07] compute differ-
ent layers of features from a given viewpoint, depending on
where the attenuation reaches a certain value. Visibility his-
tograms [CM09] compute visibility distribution of all image
samples to guide the generation of good transfer functions.
Other approaches use view-dependent images to cache re-
sults [LP03] or composite new views of volume rendered
data [RPSH08, WQ07]. Ma et al. propose to cache sam-
ples along a ray for repeated use in the transfer function
exploration process [MCP91]. To reduce storage complex-
ity, view-dependent compact representations were proposed
for volume data [SCM03] and unstructured grids [SLSM06].
These methods, however, cache individual, potentially vis-
ible samples. In this paper, we present a view-dependent
technique that computes per-ray attenuation functions to al-
low manipulation of transfer function parameters for time-
varying volume data.

3. Ray Attenuation Functions (RAF)

Our coherent visualization technique is based on the compu-
tation of per-ray attenuation functions. These functions sum-
marize the attenuation due to each intensity value in a data
range. Our key contribution is the ability to cache the accu-
mulated attenuation for a number of data ranges to approxi-
mate the volume rendering integral. Therefore, transfer func-
tion operations can be approximated by manipulating these
functions. In practice, we store these functions using only a
small number of bins (16), useful for interactive exploration
and visual steering of time-varying volume data. According
to the volume rendering integral [Max95], the color that re-
sults from compositing volume data is:

C =
Z D

0
C(t)t (t)e�

Rt
0 t (s)dsdt; (1)

whereC(t) is the radiance or color andt (t) is the attenuation
of a samplet along the view direction. When discretized, the
equation becomes:

C =
M

å
i

C(i)a(i)
i

Õ
j= 0

(1� a( j)) ; (2)

wherea(i) is the opacity of a given sample along the view
direction, andÕi

j= 0(1 � a( j)) is the attenuation due to all
sample points in front of samplei, andM is the number of
samples along a ray.

It is common to assign similar colors and opacities to val-
ues in a particular interval of intensity. Therefore, we can
group the intensity values that have the same color,C(i), and
opacity,a(i), into discrete bins. Then, the above equation
can be approximated as follows:

C �
N

å
k= 1

C(k) å
f ij i= 0;1;:::;MgAND bin(i)= k

a(i)
i

Õ
j= 0

(1� a( j)) ;
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(a) Ray Attenuation Functions

(b) RAF Properties

Figure 2: (a) Ray Attenuation Functions (RAF) are ob-
tained by adding the attenuation of intensity values grouped
into a �nite set of bins. (b) RAF Properties. Left: The RAF
for a given pixel is visualized as a logarithmic bar chart.
Middle: when we simulate a data range change that doubles
in size (and use an equivalent transfer function), the result-
ing RAF is a scaled and biased version of the one on the
left. Right: when we decrease the opacity of the two outer-
most features, the resulting RAF is a modulated version of
the original on the left, where some bins decrease in total
attenuation (the ones that decrease in opacity), while others
increase.

wherebin(i) is a function that assigns an intensity value of
a samplei to a bink andN is the number of resulting bins.
Note that this approximation depends on the way the col-
ors are grouped. In the worst case, each bin contains its own
sample. In practice, however, the colors can be grouped into
a small number of bins. The inner sum describes the distri-
bution of attenuation along a ray with respect to an intensity
value. We call it aRay Attenuation Function(RAF). For a
given bink, this function is de�ned as follows:

F(k) = å
f ij i= 0;1;:::;MgAND bin(i)= k

a(i)
i

Õ
j= 0

(1� a( j)) : (3)

Therefore, we can approximate the volume integral forN
number of bins, discretizing the intensity data range:

C �
N

å
k= 1

C(k)F(k); (4)

whereC(k) is the color of a bink (from a transfer function)
andF(k) is the corresponding ray attenuation function. The
notion of the RAF is depicted in Fig.2. Similar functions

have been proposed for a number of purposes, such as the vi-
sual probability histogram by Bordoloi and Shen [BS05] and
the visibility histogram by Correa and Ma [CM09]. Since
our purpose is to store attenuation distribution for each ray,
the notion of visibility does not �t our de�nition.

3.1. RAF Properties

After examining the RAF for several transfer function opera-
tions, we identi�ed two key properties, as shown in Fig2(b):
(1) Scale and bias: Fig. 2(b-left) shows the RAF for a single
pixel, using a logarithmic scale for the y axis. After simu-
lating a mapping that doubles the data range, we observe a
corresponding scale and bias of the RAF, as seen in Fig.2(b-
middle). This suggests that as the data range is scaled and bi-
ased, we can estimate the remapped RAF as a re-scaled and
biased version of the original RAF. (2)Modulation: Fig.2(b-
right) shows the RAF after decreasing opacity of the two
outermost features. The new RAF appears modulated; some
bins contribute less to attenuation (the ones that decreased
in opacity), while others contribute more. For the intensity
values that did not change opacity, the modulation is a fac-
tor re�ecting the new distribution of attenuation. After ob-
serving these properties, we can use operations on the RAF
to perform remapping, recoloring, and opacity modulation.
A more complex example is shown in Fig.1. In Fig. 1(b),
the global attenuation function appears similar to a scaled
and biased version of the one in Fig.1(a). This is more ev-
ident when we increase the number of bins (lower bar plot
in Fig. 1(b)). Therefore, one can obtain a coherent view of
the same time step by scaling and biasing the attenuation
function in Fig.1(a). The result, shown in the bar plot in
Fig. 1(c) appears similar to the global attenuation function.
As a result, we can approximate the result of the global trans-
fer function (Fig.1(b)) using the information gathered using
a local transfer function, as shown in Fig.1(c).

3.2. RAF Operations

The compositing equation based on the RAF has a number
of advantages for image-space operations. Although it is an
approximation, since the number of bins is limited and usu-
ally small in comparison to volume depth, perceptually ac-
ceptable results can be obtained. The main advantage of this
equation is the ability to decouple color and attenuation. On
the other hand, opacity and attenuation cannot be decoupled
entirely. However, this representation offers a number of op-
erations useful for visual steering and exploration:

Re-coloring. This operation computes a new color after
applying a different color mapping to the intensity values.
Since color and attenuation are decoupled, it is clear that the
result is just the composition of a RAF with new colors:

Ccoloring =
N

å
k= 1

C0(k)F(k): (5)
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This operation is trivial if the original volume data is avail-
able. If only the resulting volume-rendered image and not the
data itself is available, re-coloring of individual data value
ranges is not possible. Thus, the RAF provides the same
functionality that can be attained if a full 3D volume is avail-
able, but with low computational and storage costs that result
from using only a small number of 2D images.

Data range remapping. Data range remapping is per-
formed through scaling and biasing the RAF, as observed in
our experiments and shown in Fig.2(b). These operations do
not modify the opacities associated with data value ranges.
Given a scalar valuex in the range(0;1), the correspond-
ing intensity in the intensity range(a;b) is found through a
linear mapping and the remapped result at a given pixel is:

Cremap=
N

å
k

C(a+ k(b� a))F(k): (6)

Opacity Modulation. Opacity modulation computes a new
color after a change to the opacity mapping function. Since
attenuation and opacity are not decoupled, this cannot be
done accurately. However, we show that, under certain com-
mon assumptions, it can be reduced to an expression in terms
of the RAF in the original image. First, as it is common with
transfer function editors, opacity changes often occur for a
data interval instead of individual intensity values. In our ap-
proach, since we do not rely on the 3D volume but on the
compact RAF, we allow opacity changes of entire bins. Let
us consider an opacity operation where we change the opac-
ity of all samples that lie in function bink from ak to a0

k. As
with many natural phenomena, volume data often exhibits
spatial consistency, and intensity values do not appear iso-
lated, but rather grouped in regions. When performing vol-
ume rendering, this means that samples that lie in bink form
a slab, which we assume has a thickness ofK samples. We
can re-write the RAF for a bink as:

F(k) = ak

K

å
i= 0

i

Õ
j= 0

(1� ak)T(k)

= ak

K

å
i= 0

(1� ak) iT(k)

= ( ak + 1� (1� ak)K+ 1)T(k);

whereT(k) is the attenuation of opacity of samples that lie
in front of the slab. After a change in opacity for that bin, the
new attenuation function is:

F0(k) = ( a0
k + 1� (1� a0

k)K+ 1)T(k)

=
(a0

k + 1� (1� a0
k)K+ 1)

(ak + 1� (1� ak)K+ 1)
F(k): (7)

Now, an opacity change also affects the attenuation of sam-
ples corresponding to different bins. This, however, depends
on the distribution of samples along a ray. To �nd a suitable
approximation, we assume monotonicity of the intensity val-
ues along a ray. That is, for two given samplest1 andt2 along

a ray,t1 < t2 impliesVolume(t1) < Volume(t2). Therefore,
the attenuation function for the intensity values in a binl ,
wherel > k, depends on the attenuation of all samples before
the samples in this binT(l ). According to the monotonic-
ity assumption, this attenuation can be decomposed into two
factors, the attenuation due to the samples associated with
function bin k and all others, i.e.T(l ) = ( 1 � ak)KT0(l ).
Therefore, the accumulated attenuation is:

F(l ) = a l

L

å
i= 0

i

Õ
j= 0

(1� a l )T(l )

= a l

L

å
i= 0

(1� a l )
i(1� ak)KT0(l )

= ( 1� ak)Ka l

L

å
i= 0

(1� a l )
iT0(l );

whereL is the number of samples in the slab containing sam-
ples that fall into binl . After an opacity change for the in-
tensity values in a bink, new accumulated attenuation is:

F0(l ) = ( 1� a0
k)Ka l

L

å
i= 0

(1� a l )
iT0(l )

=
(1� a0

k)K

(1� ak)K F(l ): (8)

We can see that, under these assumptions, the resulting at-
tenuation function after an opacity change is a modulation
of the original attenuation function. This modulation gets
propagated from a bin that changed to the subsequent bins
in the intensity range. In general, when the monotonicity as-
sumption does not hold exactly, our solution provides an ac-
ceptable approximation, which can be used for exploratory
visualization. We believe this is a reasonable assumption,
as it appears locally in many scienti�c data sets. We have
conducted a comparative and quantitative analysis that val-
idates our assumptions, as shown in Figs.4 and 8. Fig. 4
demonstrates attenuation propagation for the turbulent vor-
ticity data set. Fig.4(a) shows the original volume rendered
image and (b) shows the volume rendered image after chang-
ing the opacities of the two outermost features. Fig.4(c)
shows the result of reconstruction using the RAF without at-
tenuation propagation, which results in incorrect composit-
ing. Fig. 4(d) shows the result of reconstruction using the
RAF with correct attenuation propagation, as described in
Eq.8. Compare to the ground truth image in (b).

4. Coherent Visualization of Time-Varying Data

In this paper, we refer to coherent visualization as one that
provides coherent temporal transfer functions. Let us de�ne
a temporal transfer function mapping:TTF : R2 7! [0;1]4,
which computes a colorC = ( r;g;b;a) for a tuple of inten-
sity and time:(s;t). A coherent TTF then guarantees that, if
s1 = s2, thenTTF(s1; t) = TTF(s2; t), for all t in the do-
main. Local transfer functions, i.e. those that do not take
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Figure 3: Coherent visualization process overview. Simulation data is read from diskand classi�ed using local transfer func-
tions. For each time step, we generate a compact representation - ray attenuation functions. We can remap the transfer function
by scaling and biasing the function to the global range. The resulting visualization is now coherent. Further operations on the
transfer function can be performed on the RAF without the need to retrieve theoriginal 3D volume data.

(a) Original (b) Opacity change (truth)

(c) No Propagation (d) Correct Propagation

Figure 4: Attenuation Propagation. (a) Original volume
rendered image. (b) Volume rendered image after reducing
the opacity of two intensity ranges. (c) Reconstruction us-
ing the RAF without attenuation propagation is incorrect.
(d) Reconstruction using the RAF with correct attenuation
propagation provides accurate results. Compare to (b).

into account the time dimension, are, in general, not coher-
ent, since intensity values are mapped to the local and not
the global range. An example is shown in Fig.1(a), where
similar colors do not correspond to equivalent intervals in
the data range. Once the global range is known, we can
achieve coherence by manipulating the ray attenuation func-
tions, without requiring access to the 3D volume data. Since
the RAF is a compact representation, it can be stored in sys-
tem and GPU memory for a large number of time steps. Data
range remapping can be performed simultaneously for all
time steps after they have been loaded into memory, inO(T)
time, whereT is the number of time steps in a sequence.

Fig. 3 shows the main process for a typical application
scenario. In this case, we assume we have several time steps
and we do not know the global data range. As we read
each individual time step, we apply a local transfer func-
tion, which can be provided by the user or generated auto-
matically, based on the data statistics. Instead of generating
a color image, we generate a number of images that consti-
tute the ray attenuation function. For a 16-bin function, four
RGBA images are suf�cient, as we discuss in Section4.4.

4.1. Local-to-Global Range Remapping

To see the effect of applying a coherent transfer function,
we remap the RAF computed with a local transfer func-
tion to the global range. This can be achieved by means of
data range remapping operations and recoloring, as intro-
duced in the previous section. The remapping can be per-
formed as de�ned in section 3.2, through two consecutive
range remapping operations. First, from the local interval
[minlocal;maxlocal] to the normalized interval[0;1] and then
to the global range[minglobal;maxglobal]. This remapping
has the advantage of retaining the richness of the local trans-
fer function, which highlights isosurfaces of interest in the
local range, while keeping a consistent coloring throughout
the simulation. An example is shown in Fig.1, depicting sev-
eral time steps of the argon bubble-shockwave interaction
simulation. This data set consists of 264 time steps, each
containing 640� 256� 256 voxels. The �gure shows the
result of the simulation of a shock wave interacting with a
bubble of argon gas surrounded by air. As the simulation pro-
gresses, a swirling torus-shaped structure is observed along
with smaller turbulent structures. A local transfer function
(a) may be applied to capture these structures over time, but
since they are not coherent, this may mislead the scientist.
For example, the dissipation of the argon gas is not apparent
in Fig. 1(a). On the other hand, the global transfer function
helps us see the dissipation in (b). In (c), we show the results
of remapping using our approach. The color bar shows the
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Figure 5: Coherent transfer function operations performed on a combustion data set (three time steps are shown). (a) Results
of reconstruction using attenuation functions. Compare the ground truth volume rendering (second column) to the image recon-
structed using attenuation functions (third column). (b) The scientist adjuststhe opacity of several features to avoid ambiguity
in one of the regions, especially the structures in yellow and orange. (c) Finally, the user applies a new color map to highlight
the variation in the interval previously colored yellow, which appeared �at.Now, the scientist can see a more intricate structure.

actual range of each local time step within the global range.
Compared to (b), we see that the reconstruction is quite ac-
curate. Fig.1(d) also shows the result of changing the global
color map to match the local transfer function for the last
time step (right). This new color map brings out the shape
of the argon gas ring. Since this change makes previous time
steps appear homogeneous, we can add extra colors (dark
red) to depict the variation of the scalar �eld.

4.2. Transfer Function Exploration

Fig. 5 shows results of exploring the color and opacity map-
pings for a combustion simulation. In particular, we visual-
ize the OH variable, representing the mass fraction of the
hydroxyl radical. This data set consists of 122 time steps,
each containing 480� 720� 120 voxels. Columns 1;3, and
4 show three reconstructed time steps using different trans-
fer function operations. The second column is the ground
truth image obtained using direct volume rendering, for the
time step in column 3. We can see a relatively high visual
accuracy of reconstruction. Fig.5(a) shows the result of ap-
plying a coherent transfer function via remapping. Fig.5(b)
shows the effect of opacity modulation. Here, we decrease
the opacity of features in red and purple to highlight regions
with high OH. High OH regions are of interest to scientists,
since they serve as re-ignition indicators. Fig.5(c) shows the

effect of re-colorization, applied to add more variation in the
high OH regions and to highlight previously hidden struc-
tures resulting from low contrast of the yellow and orange
regions. Since we can easily cache the compact RAF, we
can apply these changes coherently throughout the simula-
tion with little computational cost.

4.3. RAF Adjustment

By de�nition, each bin in the RAF accumulates the attenua-
tion of all the intensity values mapped to it. This may intro-
duce errors when trying to reconstruct fuzzy boundaries, as
seen in Fig.6 (c). This is due to the nearest neighbor approx-
imation of accumulated attenuation. To alleviate this issue,
we adjust the RAF using a smooth interpolation kernel that
distributes attenuation between bins. If an intensity value co-
incides with the center of a bin in the RAF, the accumulated
attenuation is assigned completely to that bin. Conversely, if
the intensity value lies in the middle of two function bins,
we assign half of the attenuation to each of the bins. In gen-
eral, this adjustment is done as follows: letT(i) denote the
accumulated attenuation of a samplei along a ray. With-
out adjustment, the attenuation function is accumulated as
F(k) = F(k) + T(i), for k = bin(i). Instead, we compute the
offset distance of an intensity valueVolume(i) with respect
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(a) Combustion Data set (b) Ground Truth

(c) No Function Adjustment (d) Function Adjustment

Figure 6: Ray Attenuation Function adjustment. (a) A com-
bustion data set and (b) inset view. (c) Without RAF adjust-
ment, the reconstructed volume is not smooth and has sharp
color boundaries. (d) With RAF adjustment (using a linear
function), the boundaries are smooth. Compare to (b).

to a bin's centroid:dx= bVolume(i)N+ 0:5cN� Volume(i),
and update the attenuation function for the binsk andk� 1:
The attenuation function is then updated as:

F(k� 1) = F(k� 1) + k(0:5� dx)T(i)

F(k) = F(k) + ( 1� k(0:5� dx))T(i); (9)

wherek(x) is a kernel function that describes the contribu-
tion of each function bin. In Fig.6(d), we show a polyno-
mial kernelk(x) = xp with p = 1. Compare to the ground
truth image in Fig.6(b). Examples throughout this paper use
a polynomial kernel of degreep = 3.

4.4. GPU Implementation and Cost Evaluation

Our approach is fully implemented on the GPU. We use a
single pass volume rendering shader to obtain the attenua-
tion functions. We leverage multiple render target function-
ality of modern GPUs to write a 16-bin RAF in a single pass
into four RGBA images. This shader evaluates Eq.9 as it
traverses a ray through the volume. Remapping and transfer
function operations are performed in a separate rendering
pass. This pass operates on a quad with the same dimen-
sions as the screen, and fetches the attenuation values from
the four images computed previously. Since the image is the
result of simple 2D operations, this pass is much faster than
volume rendering. Fig.7 evaluates the performance of our
approach and compares it to traditional volume rendering.
Since our method is pixel-bound, i.e. it depends on the size
of the image, we measure the rendering time for each frame
vs. the effective pixel area of a given volume. We found an
average of 1:7� overhead cost for obtaining the RAF. This

cost is expected to approach 1:0 as GPU architectures im-
prove. The cost of the re-compositing stage alone is consid-
erably smaller compared to volume rendering, as seen by the
green line running at the bottom of the plot. This is not only
useful for remote and in-situ visualization, but proves to be
a useful aid for local caching of time-varying data. The ac-
companying video shows several examples of our technique
as a caching mechanism.

5. Limitations and Discussion

Although our technique offers interactive exploration of
time-varying data, it is still a view-dependent rendering pro-
cess. That is, the attenuation functions are only valid for a
given viewpoint. However, in a typical exploration scenario,
visualization users adjust the opacity and color properties
while keeping the view intact. The view is only changed
to explore how the classi�cation highlights structures from
different view points. In remote and in-situ visualization,
viewpoint changes can be handled by pre-fetching different
orientations of the data and using image-based techniques.
We believe that our approach can be extended in the same
way. We can pre-fetch the different RAF corresponding to
different orientations of the data. Then, we can change the
view direction slightly while still providing coherent trans-
fer functions. Another limitation of our approach is the ap-
proximation of opacity transformations. As we have shown
in Section 3, adjusting the opacity mapping cannot be recon-
structed exactly using attenuation functions, since it depends
on the actual distribution of samples along a ray. Fig.8(left)
shows our study of reconstruction accuracy using the RAF as
we change the opacity of some intensity ranges for three data
sets. We measure accuracy as the sum of square differences
(SSD) between the image obtained with our approach and
the image obtained with direct volume rendering. We can
see a non-linear decrease in accuracy as the opacity modu-
lation decreases (which results in a higher opacity change).
The maximum change occurs at opacity modulation 0, which
makes the outermost features completely transparent, while
opacity modulation 1 means no change in opacity and pro-
vides the base reconstruction error. The accuracy also de-
pends on the spatial frequency of the data. For example, for
turbulent data sets, the overlapping of structures causes the
attenuation saturate rather quickly. Therefore, it is not possi-
ble to reconstruct intensity values beyond those visible from
a given view point. Finally, we have explored the RAF at
16-bin resolution. This choice was due to the GPU limita-
tions in the number of render targets we could write simul-
taneously. However, we can extend the number of bins with
additional rendering passes. As demonstrated in our results
and the accompanying video, the quality of the reconstruc-
tion is acceptable for 16-bins. Fig.8(right) shows the im-
provement in accuracy as the number of bins increases. For
smooth data sets, such asVortex, the accuracy does not im-
prove considerably with additional bins. For turbulent struc-
tures, such as the argon bubble, however, we see a less steep
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Figure 7: Timing comparison for three data sets. Since our method is pixel-bound, i.e. it depends on image size, we compare
time vs. effective pixel area of the volume. We compare direct volume rendering (blue), computation of the RAF (orange),
and compositing of the RAF (green). The cost of computing the attenuationfunction is well outweighed by the bene�t of re-
compositing using the RAF (green plot).

Figure 8: Left: Accuracy plot for three data sets as we change the opacity of a given interval. We see a smooth increase in
error (and in its standard deviation) as modulation goes from1 (meaning no opacity change) to0 (meaning that the outermost
features are completely transparent). Right: Accuracy plot as we increase the number of bins in the RAF.

improvement. These bins are placed uniformly along the in-
tensity data range. In certain cases, data may be distributed
unevenly throughout the domain. The function bins can then
be adjusted to adapt to the data distribution, so that more
bins are assigned to intervals with higher frequency.

6. Conclusion

In this paper, we introduce an exploratory technique for co-
herent visualization of time-varying data. In the past, co-
herency required a priori knowledge of the entire simulation,
such as the global data range. This prevented scientists from
exploring the data in-situ, while the simulation is running,
or at interactive rates for large data sets. We have shown that
ray attenuation functions, which are compact representations
of volume data, can be stored and cached in system memory
for a large number of time steps. Their main advantage is en-
abling coherent exploration in transfer function space with-
out accessing the original time-varying data. Our approach is
an approximation of volume rendering and is geared for ex-
ploratory/preview visualization. It is a useful mechanism for

exploring time-varying volume data that alleviates the costs
associated with transferring, reloading, and caching 3D vol-
ume data sets. The ability to browse through the simulation
data quickly allows scientists to ef�ciently explore different
transfer functions to highlight certain structures of interest.
Once the scientist �nds a satisfactory transfer function, the
system can generate a volume rendering of the entire simu-
lation at full accuracy, if the original simulation data is ac-
cessible.
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