Proximity-based Visualization of Movement Trace Data
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ABSTRACT data where relative motion patterns are important. These visualiza-

tions differ from traditional approaches in that we derive a multi-
Odimensional data set consisting of proximity values, then map the
derived data to an abstract space rather than the given spatial lay-
out. This abstract space helps to prevent clutter and to disambiguate
overlapping traces in high density areas. Since we want to preserve

taining the actual layout of the data space is often desirable, direct lobal traiectori I ire that the abstract )
visualization of movement traces becomes cluttered and confusingg obaltrajectories as wefl, we require that the abstract space IS con-
tinuous. That is, a path followed by an entity in the actual given

as the spatial distribution of traces may be disparate and uneven.S ace will result in & continuous path in the proximity space

we present proxmlty-based vnsuallz_atlon as a novel approach to IOWe resent several visualizat?on S acesp de ict)éd F;s Zb lots

the visualization of movement traces in an abstract space ratherthan]_he rsﬁ one projects the proximity drz);lta to, a sFi)ngIe dimensi%n )

the given spatial layout. This abstract space is obtained by consid- '™ - . . : o !
g P y P y while the other dimension represents time. These visualizations can

ering proximity data, which is computed as the distance between . . X X :
entities and some number of important locations. These important €Present the entire spatio-temporal data set in a single view. The
second type of plot provides a richer spatial visualization, at the ex-

locations can range from a single xed point, to a moving point, . . - : 0
g 9 P gp pense of losing the time dimension, which is represented as traces.

several points, or even the proximities between the entities them- This plot t ; ful f i ity data with t
selves. This creates a continuum of proximity spaces, ranging from IS plot type IS uSetul for représenting proximity data with respec
to multiple points, and uses af ne and projective transformations

the xed absolute reference frame to completely relative reference h as PCA) imity data to a 2D abstract
frames. By combining these abstracted views with the concrete spa-(Suc as .) 0 map proximity data to a 2 abstract space.
The visualization of proximity data enables us to discover enti-

tial views, we provide a way to mentally map the abstract spaces . R . ) .

back to the real space. We demonstrate the effectiveness of thisieS that exhibit interesting behaviors, such as suspects, witnesses

approach, and its applicability to visual analytics problems such as or casualtle_s. Furthermore, it provides a better space for_descrlbln.g

hazard prevention, migration patterns, and behavioral studies. € évacuation procedure and patterns such as congestion, density,
and dispersion. To test our approach, we use an evacuation data set

Keywords: Spatio-temporal visualization, proximity, linked  obtained from the VAST 2008 challenge [13] and the Elk habitat

views, principal component analysis, temporal trajectories, move- data set [25], and we discuss the strengths and limitations of each

ment patterns. technique and how different patterns can be observed in an abstract
space.

The increasing availability of motion sensors and video cameras in
living spaces has made possible the analysis of motion patterns an
collective behavior in a number of situations. The visualization of

this movement data, however, remains a challenge. Although main-

1 INTRODUCTION

The visualization of movement traces in time is a challenging prob- 2 RELATED WORK

lem. Traditional approaches to the problem map 2D and 3D space The main challenge when visualizing movement traces is the simul-
directly and use time as either an extra dimension, with coordi- taneous depiction of temporal and spatial data. Despite the long
nated views, or animation. However, since the spatial distribution history and ubiquity of maps as visual representations, the effective
of traces may be uneven, static representations become clutteredepresentation of time remains a challenge [23]. Initial attempts
and dif cult to understand in regions of high density. Although often enhance maps with arrows and lines [30] or using anima-
maintaining the original spatial layout is often desirable, certain ap- tion, such as the pioneering work by Moellering [22], and recent
plications may consider the proximity of entities to a set of points approaches as surveyed by Harrower [11] and MacEachregn [21
of interest to be more important than their spatial coordinates in More sophisticated approaches use the space-time cube metaphor,
a given xed frame. For example, the analysis of movement data Where two dimensions represent spatial coordinates while the third
in emergency situations may bene t from a visualization that high- dimension represents time. Movement traces are therefore repre-
lights the distance of each entity to the epicenter of an event. Evac-sented as line strips in a three-dimensional space [1, 17]. The ability
uation drills and procedures can be analyzed by considering the dis-t0 manipulate the parameters of the visualization and the variables
tance of moving entities with respect to the exits. Although spatial mapped to the 2D map has enabled a myriad of new visualizations
context information is lost, relative motion events, such as conver- of geospatial data [19]. Tominski et al. extend the notion of space-
gence or divergence of movement, or the appearance of trends andime cube with 3D icons to represent multivariate time dependent
uctuations, can still be visualized using derived quantities such as data [27].
proximity. Other global patterns, such as congestion, symmetry, One of the problems of the above visualizations is the clutter
ocking, and repetitions, may be observable as well. that may occur due to the asymmetry of the spatial data. Some
In this paper, we present the notiongbximity-based visualiza- ~ have dealt with this problem with abstraction [1], aggregation [27],

tion, which attempts to improve the visualization of spatio-temporal and clustering [10] of the spatio-temporal data. As an alternative to
the added complexity, lvanov et al. decompose the spatio-temporal

tecrnovrsanin@ucdavis.edu nature of data into several synchronized views. One view presents
Tmuelder@cs.ucdavis.edu spatial information as traces, and a timeline view shows temporal
*correac@cs.ucdavis.edu information [15].

Sma@cs.ucdavis.edu All of the above keep the spatial layout given by the data. How-

ever, most of these data can be visualized in an abstract space, using
multi-variate visualization techniques [10]. These include scatter-
plot matrices [5], parallel coordinates [14], star coordinates [16],
radial layouts [26] and circle segments [2]. Although the origi-



nal spatial structure is lost, these visualizations allow the depiction
of additional variables in a single 2D image, time included, and

scale better to large data sets. Given the increasing complexity
of high-dimensional data, these visualizations often combine data
transformations to reduce the complexity, such as clustering [3], or
to reduce the dimensionality to 2D, such as projections, principal
component analysis [6] and self-organizing maps [18].

The advantages of abstract spaces have been exploited to repre
sent time. Early hand-made illustrations of timelines and graphs
[28] have inspired visual metaphors such as lifelines [24], the The-
meRiver [12], and History Flow[31] where curved lines of vary-
ing thickness depict a varying quantity over time. For spatio-
temporal visualization, however, line graphs remain the predomi-
nant metaphor.

In our paper, we use line graphs to represent time on an abstract
space rather than the given spatial layout. We aim to preserve the
spatial relationships within the data as much as possible, while har-
nessing the scalability and expressive power of abstract representa-|
tions. We therefore turn tproximity data which quanti es the dis-
tance among entities of interest rather than the spatial coordinates
in a xed frame. The collection of these proximities is a multi-
variate data set that can be visualized in an abstract space, and help
formulate questions about the relative motion of entities, regarding
their patterns, the appearance of bottlenecks and the detection of
suspicious activities. We make use of principal component analysis
and af ne transformations [9] to reduce the dimensionality of this
space.

Distance-based statistics and weighting has been explored to
augment geographical visualization using secondary visual vari-
ables, such as color [8, 29]. The visualization of relative motion
was explored by Laube et al. [20], who use pixel maps to depict the
motion of entities over time. Weaver extended this idea to scatter-
plots, allowing the user to visualize different properties of relative
motion such as time, azimuth, and speed [32]. Although these help
the user discover motion patterns such as ocking, they may not
represent global trajectories in an intuitive manner. In our paper,
we show that global trajectories can be visualized in an abstract
space while highlighting relative motion patterns and proximity in-
formation. In a recent article [7], Dodge et al. describe a taxonomy (b) Proximity to a point of interest versus time
of movement patterns in terms of derived quantities from spatio-

temporal data. Our paper explores one such derivative, namely therigyre 1: (a) Traditional visualization of the simulation of an evacua-

use of proximity or distance to reveal spatio-temporal patterns. tion in an of ce building after the detonation of an explosiv e in one of
the rooms. Since time is not represented as its own dimension, it is
3 PROXIMITY-BASED VISUALIZATION not possible to understand what aspects of the event occurred con-

tcurrently. (b) Proximity-based visualization where traces are plotted
as distance to the explosion (y-axis) vs. time (x-axis). Now, we can
see the entire event at a glance. For example, we notice the motion
of some entities before the detonation of the explosive, suggesting
possible suspects and/or witnesses to the event.

Traces can be de ned as a representation of an object's movemen
through time. In general, the visualization of traces de nes a direct
mapping from the coordinates in a given reference frame to 2D or
3D coordinates in the visualization space. An example is shown in
Figure 1(a), a visualization of a crowd simulation during an evac-
uation procedure following an incident (an explosion in one of the ) L .
rooms). Squares represent the location of people, while lines repre-where we plot the same information in Figure 1(a). In this case,
sent the traces of movement over time. each line is a movement trace that plots distance to the location
A proximity-based visualization is an abstraction of the move- ©Of @n explosion in a building (y-axis) versus time (x-axis). While
ment data by deriving relative information and using that informa- traditional visualization of traces requires animation or switching
tion to obtain a novel view on the data. In particular, we consider Petween intervals to represent time, this variable is directly repre-
distancesas the derived data. Distance can be de ned between Sented as its own dimension in proximity space. In this case, we can
moving entities and a xed location, e.g. locations of doors or stair- detect the moment when the evacuation occurs and identify entities
ways in an of ce building. Distances can also be de ned to entire that moved before the incident (highlighted in blue). Because we
regions, such as the distance to the closest road or water sourcé!ot distance to an explosion, we can easily identify people that pre-
when analyzing animal movement in the wild. In other cases, dis- sumably dled' in the explosion or soon after, shown as steady lines
tances can represent abstract data, such as the similarity of two dochear the x-axis.
uments. Two documents are said to be “close” when they share a In general, proximity-based visualizations are not limited to a
certain number of words or terms. single distance dimension. In many cases, it may be of interest to
The advantage of using distance is an immediate reduction of di- analyze the distance to multiple points of reference. Later on, we
mensionality, that allows us to explore other dimensions, such asdescribe some of the resulting visualizations of multi-dimensional
time, in a single 2D image. An example is shown in Figure 1(b), proximities.



comes a line. Divergence is the opposite of convergence and refers
°es ‘ ‘ to the pattern formed when entities disperse from a common loca-
Lo e tion.

3.2 Proximity continuum

When we consider proximities for visualizing movement data, we
. . can imagine a continuum, spanning from the traditional represen-
- ‘ |/ - tation in absolute coordinates, to visualizations that map the entire
4 ~—, space in a relative frame of reference, i.e., proximity values. The
continuum can also seen as a transition betwegpasial frame of
reference, where the visualization and the data spaces are mapped
one to one, and aabstractspace, where the visualization space is
the result of a transformation from the data space, in this case, a
R e o transformation that derives proximity. Examples of these two ex-
ﬂ —~ ‘ / tremes are the visualizations described in Figures 1(a) and 1(b). In
J ‘ between, we nd visualizations that progressively trade elements in
absolute coordinates to proximity. First, we haiegle point ab-
(e) Fluctuation (f) Convergence straction where the locus of proximity is de ned at a given point,
without changing the actual locations of points. An example is
) q shown in Figure 3, where we retain the map in absolute coordi-
“\ ) : =) nates, but add views of the rest of the data relative to single points.
‘ 1 We can see, in their respective plots, what characterizes the move-
° ment in their own proximity. For example, the entity on the left
was closer to the bottleneck that lead towards the exit marked in
green, and relatively far from the blue and red exit areas, which
were closer to the zone where the incident occurred. Conversely,

(a) Spatial concentration (b) Co-incidence

(c) Concurrence (d) Trends

(9) Meet (h) Divergence

Figure 2: Tra_nsition frqm normal movement data to proximity data. on the right, we see that most people ended up far from it, and a
Each pattern is shown in absolute coordinates and mapped to a rel- single entity seems to exit through the same area (blue line at the
ative coordinate versus to time. bottom). This type of proximity visualization enables the analyst to
3.1 Movement patterns form hypotheses about individual behavior.

- . L . Next, we obtain visualizations that abstract entire regions. This
Ong of the advantages of prQX|m|ty-based wsuahzgﬂons is that they enables the analyst to answer questions regarding crowd behavior
retain the general patterns in the_ data. As desc_rlbed by Dodge €land environmental factors in the movement of entities in physical
a.l.. [7]. pattems emerge dependlpg on the relative change of po'regions. An example is shown in Figure 4, where we provide prox-
sitions an(_j velpcmes among moving patterns. Therefore, most of imity visualizations for two hallways in the evacuation data set. We
these are invariant to the frame of referenced used to de ne the MO-ae that for most part, people in these regions evacuated to the
tion, andF_can bg |dhent| ed (somletlm?s more eaflly)ttln pr0_><|m|t%/ same area (green). However, we see one trajectory in the region to
space. Flguré 2 shows examples o moyemfzr_l pa erf,‘? In a tra-y,e right that evacuated to a different zone (marked up in red). In
_dlt!onal visualization and their corres,_po_ndl_ng signature” in prox- fact, we see that this trajectory is from a person that moved before
imity space.Should be noted, that this list is not a comprehenslvg,the event occurred, and can be considered a suspect. Notice also
these pattern were chosen because they are common in proximit ’

. Ythe magnitude of the congestion in the hallway to the left compared
data and provide an example how patterns translate from one spacg o hallway in the right
to the other. '

Movement patterns are genera_llly any _recog_ni_zable spatial and,4  proxiMITY BASED VISUAL TECHNIQUES
temporal regularity or any interesting relationship in a set of move- . . . o
ment data. Spatial concentration is the concentration of moving We developed several techniques to visualize proximity informa-
entities at a certain instance in time. In proximity data, this is rep- tion. One of them, as seen above, plots a single proximity quantity
resented as entities that are near each other. For instance, peopléersus time. Proximity, is in general, a multi-dimensional collec-
standing in the same room generates a spatial concentration patfion of data. For this reason, we also present two techniques that
tern. Co-incidence is when two entities have the same positions in handle multi-dimensional proximity in a 2D visualization. The ef-
the same time or lag in time. In proximity data, this can be viewed fectlve_ visual analysis of thgse V|suaI|zat!ons requires a series of
as two lines that meet and coincide for a period of time. Concur- Operations, such as annotation and selection of entities and time, as
rence is a set of entities exhibiting synchronous movement or at described in the following sections.
least similar motions, regardless of their relative speed. In proxim- o -
ity space, these tend to a?ppear as curves that remaﬂn parallepl. Trengd1 1D and 2D Proximity Visualization
are consistent changes in movement that can be predicted, whileThe traditional approach to dealing with movement data is to di-
uctuations are irregular changes in the movement. These patternsrectly map the coordinates to space, as in Figure 1(a). One of the
are retained in both spaces, because they relate to the derivatives dfimitations of this approach is the inef cient use of space, which
movement and not the frame of reference. The speed of a movingdoes not convey time very well. Even when trails are added, a
entity, and an overall trend, can be judged by the slope of its trajec- static glance at the visualization does not explain concurrent events
tory in proximity space. The higher the slope, the faster the entity nor causal relationships. To get a good perspective of temporal pat-
moves. Convergence refers to the movement of a group of entitiesterns, the analyst must resort to back-and-forth interaction, with in-
into the same location. In proximity data, this can be seen as trackscreasing cognitive load. Therefore, it becomes evident that map-
coming together to a point and possibly intersecting. A "meet” pat- ping movement data to a one-dimensional proximity enables us to
tern is an extension of convergence, where after converging the en-use an extra dimension as time.
tities stay together for some time. In proximity space, this pattern  Adding more proximities demand the use of visual representa-
appears as the convergence pattern, but the converging point betions for an extra dimension. When two proximities are visualized,



Figure 4: Region instancing. The application allows a region to be se-
lected to be abstracted. In this example, we select two hallways and
obtain proximity visualizations to compare the evacuation behavior in
different regions. In this case, we see a much bigger congestion on
the hallway in the left.

and a; is the angle between the line segmept 1 andpg [9],
wherec; are the original positions of the proximity centers in the
physical space.

Then, a 2D plot is obtained by arranging the proximity points
in the abstract space. This allows the user to “stretch” or “com-

Figure 3: Object instancing. We can select an individual person and
nd the relative distance of everyone else with respect to hi m. In this

case, we selected two people, the one on the right is a person near press” entire regions to gain access to detail information that may
the event and the one on the left is a random individual chosen for be hidden due to clutter.

comparison. To be able to discern the individual lines, the exits were

colored. 4.2.2 A PCA-Based Technique

one can use color to represent the second distance, while retainingAlthough the previous approach is intuitive, it requires user inter-
the x-coordinate as time. This approach, however, does not extendvention to make ef cient use of the 2D space. A general approach
to multi-dimensional proximities. For a general solution to the case uses Principal Component Analysis (PCA) to reduce the dimen-

of multiple proximities, we turn to projections. sionality of the proximity data while guaranteeing maximum vari-
o . o o ance in their projections. Principal Component Analysis is a linear

4.2 Multi-dimensional proximity visualization transformation that takes a setmproximity vectors ofm dimen-

When we want to visualize the proximity of moving entities with ~ sionsVi, where 1 i n, and calculates a new set of basis vectors

respect to several points, we cannot longer rely on representing eac Bjwhere 1 j m. These basis vectors have the property that they
proximity as its own spatial dimension. If we limit ourselves to 2D  are sorted according to which vectors point in the direction that the
visualization spaces, we have two options. One, project a multi- data has the most variance. That is, the projection of the data onto
dimensional proximity data point to a single dimension, and retain the rst basis vector will have higher variance than the projection
the other dimension for time. Two, project the proximity data point of the data onto the second basis vector. Therefore, to reduce di-
to a 2D point, and use time as traces. We explore these two in themensionality while preserving the maximum variance, we project

following sections. the vectorsd/; onto the rstk basis vectors, whereis the number
. ) of dimensions available.
4.2.1 An Interpolation-based Technique One alternative is to reduce the multi-dimensional proximity

This mechanism projects a multi-dimensional proximity to a 2D vector to a point in a single dimension, and retain time as another
point, and represents time as traces. Unlike traditional movementdimension in a 2D plot. The resulting plot is similar to the one-
data visualizations, we can arrange the loci of proximities in ab- dimensional proximity, but the y-axis, instead of representing a dis-
stract space and let the data points be arranged around these pointéance to a single point, represents the projection of multiple prox-
This can be obtained via a parameterization of the space so that thémities, such that variance is maximized.

loci of proximity can be arranged freely in 2D. To do this, we turn Another alternative is to project the proximity data into 2D
to mean value coordinatesvhich parameterizes a data point as a space, and trade the time dimension for traces. The result is similar
function of the distance to a set of proximity centers, that is, for a to the visualization in absolute coordinates, but PCA ensures that
data pointp, the new poing in proximity space can be computed the data points exhibit the largest variance in those two dimensions.

as: . This is important for avoiding excessive clutter and inef cient use
— 2iWiG 1) of the 2D space. Because of the generality of this approach, we
AW are not bound by a small number of proximity centers, but can also

visualize the relative distance between every pair of entities, along
with a number of xed points of interest.

An example of 2D proximity visualizations is shown in Figure 5
_ tan(a; 1=2)+ tan(a;j=2) for a number of trajectories of free-range animals, such as elk and
- ip ci @ deer [25]. On the left, we see the traditional visualization of deer

wherec] are the positions of the proximity centers in the abstract
space, and the weights are de ned as




(a) Original (b) Proximity Interpolation (c) Proximity PCA

Figure 5: 2D proximity visualization. (a) Points of interest (blue circles) are placed on the physical space. (b) Proximity visualization with respect
to the blue circles using interpolation. The user can “stretch” any part of the abstract space to highlight the trajectories of small regions. In this
case, we see three trajectories merging. From (b), it is more clear that one of the three came from the left when merging. This is dif cult to see in
a traditional space due to the small size of this region (c) PCA-based proximity visualization. In this case, PCA automatically nds a dispersion of
the 2D proximity data so that the overall variance is maximized, in the hopes of a better screen use. Here, a larger part of the screen is devoted
to the trajectories, especially noticed for the regions in the middle. Compare this to the density in (a)

movement. We follow three trajectories, highlighted with orange, proximity plots in the y-axis, they may not be as intuitive in the
yellow and red. We can see that the particular region is small and 2D visualizations. To overcome this problem, we introduce prox-
the nature of the movement is dif cult to see. In the middle, the data imity rings, which de ne concentric proximity regions from a point

is plotted relative to a number of proximity centers representing of interest in both the physical and abstract spaces. In proximity
water springs and other topographical features. Using interpolation, space, these rings appear as distorted regions, but they still convey
we map this data in a more space-ef cient way. By distributing the the notion of proximity required to obtain accurate measures on the
proximity points, we see a more detailed view of the trajectories data, as seen in Figure 5.

of interest. We see that the three trajectories merge, one of them Entity Annotation. We also let the analyst tag individual en-
(red) coming from the left, while the other two seem to coincide for tities based on certain characteristics. For example, an analysis of
a long period of time, suggesting some herding behavior. On the the velocity of movement helps annotate those entities that stopped
right, we plot the proximities using principal component analysis. moving. In proximity space vs. time, these appear as traces that at-
When we use PCA, the trajectories are automatically arranged suchline. This type of tagging proved helpful to indicate the casualties
that the space is better utilized in general. In this case, we can sedn the evacuation simulation and identify any patterns surrounding
more clearly the trajectories in the middle of the plot, which in 2D those deaths.

space clutter around small regions. Another tool is the annotation of entities based on the proximity,
inclusion or intersection with a region in space. We let the analyst
4.3 Annotation and selection annotate regions in physical space with different colors and tag the

traces (in both proximity and physical space) that are included in
that region (so the color “shines” through the object), or that at some
point in the past intersected that region (so the color is “stained” on

' the entity, as proposed by Bouvier and Oates [4]). Examples of this
annotation are seen in Figures 3 and 4, where we tag some of the
entities based on the exit they took out of the building.

To aid in understanding the data in proximity space, we have built a
prototype application that uses coordinates views of proximity and
physical space, and provides coherent operations on both spaces
described below:

Abstraction Selection. The user can select any level of ab-
straction for the proximity visualization. This idea builds upon the e sejection. We let the user select any time interval in the
continuum of representations we have derived. In the most basic y,, '\ia an interactive timeline. The timeline itself also represents
abstractlon,. the user selept; a number of entities f'md enhanceg theltrhe trajectories as the rst principal component of proximity against
representation with proximity plots. An example is shown in Fig- ime
ure 3 for an evacuation simulation. Here, we see two entities with '
their own proximity plots (as magni ed at the bottom). We see that,
for the entity on the left, most people exit through the same route ]
this entity took and assembled in a region with people that evacu- In order to demonstrate these techniques, we apply them to the
ated through a different door (green traces). The entity on the right, evacuation data set from the VAST 2008 contest, consisting of a se-
however, took a route only shared by a single person (blue trace),!ie€s of traces from a crowd simulation [_13_], and the Starkey habitat
away from what the majority of people did. Another selection is database for Ungulate research, consisting of traces of free-range
the proximity visualization of entire regions. In this case, the user animals in a small forest in northeast Oregon [25, 33].

“draws” a region of interest in the physical space and a new visu- )

alization is created that summarizes the proximity data within that >-1 VAST Evacuation Data

region. An example is shown in Figure 4. The VAST 2008 contest data set is a collection of traces from a
Region Annotation.  Although distances are de ned in 1D  simulation of an evacuation subsequent to an explosive in an of-

5 CASE STUDIES



(a) EIk93 Data set

(b) Deer93 Data set

(c) Cattle95 Data set

Figure 7: Visualization of free-range animal movement [25], relative
to distance to a water source, and separated per species.(a) EIK,
showing convergence patterns. (b) Deer, showing a predominant
territoriality, (c) Cattle, exhibiting herd behavior.

We can see when the evacuation takes place as most of the lines are
still (horizontal lines) and then begin to disperse towards the near-

Figure 6: Proximity-visualization of evacuation simulation from the est_ exit. T_hi_s visualization _steers our attentiorl to three more Iin(_es,
VAST 2008 data set [13]. Here we plot distance to the main event which exhibit movement prior to the event, which may suggest wit-
(explosion) vs. time. The green line denotes the main suspect. High- nesses or suspects. By tagging the exit areas (two in yellow and
lighted (thicker) lines denote people of interest as they moved before one in teal, for the exit used by the prime suspect), we can get a
the incident. The clutter in the upper side of the plot illustrates a con- glimpse of the overall evacuation procedure. We also detect those
gestion as lines converge (to one of the exits), and nal dive rgence people that did not exit the building, here identi ed as casualties
(yellow lines as they left the building). Red lines denote casualties. (red lines). From the distance of the red lines to the x-axis, we can
We see that most of the later deaths are from people that did not formulate hypotheses about the cause of death. The nearer ones
evacuate towards their nearest exit. possibly due to the explosion, while the lines farther away corre-

spond to deaths caused by smoke or re.
ce building. The simulation tracks the movement of 82 people By looking at the proximity plot we nd a collection of conver-
for about 15 minutes. One of the questions when analyzing thesegence patterns that correspond to bottlenecks in one of the hallways.
data setis to gure out where the bomb was believe to be detonated Within this bottleneck, we notice a red line, which seem to corre-
and characterize the events that unfolded afterwards, including thespond to a person that could not get out the nearest exist (notice a
identi cation of any casualties, witnesses and suspects. To analyzecongestion in the upper side of the plot), and dies when attempting
this data, we turn to both traditional and proximity visualizations. to nd another evacuation route. Except for this person, everyone
The location of the bomb, a very Speci c detail, was rst obtained who evacuated through this route made it Safely to the outside. The
by analyzing the traces in a traditional 2D animation. However, Same cannot be said about the upper exit, shown as yellow lines in
discovering patterns and tracking individuals became increasingly the middle of the proximity plot. In this region we see a number of
dif cult by looking at the animation. We attribute this dif culty to ~~ red lines, corresponding to casualties. We notice that some of them
the need to track multiple targets, which is known to be increasingly come from the upper size of the plot, suggesting that they did not
dif cult as the number of targets increases (typically beyond 3 or 4 Pick the nearest exit for evacuation, resulting in death. As a static
targets). Although some behavior is evident from the animation, representation, a number of behaviors can be inferred by looking at
such as a couple of casualties following the explosion, it is dif cult Proximity that cannot be inferred from the 2D traditional visualiza-
to accountfor all behaviors that may have ensued. For this reason, tion due to the inability to depict time.
we turn to proximity visualization. In this case, we plot distance to .
the explosion versus time. The result is seen in Figure 6. We see®-2 Free-range Animal Data
one person, identi ed as the main suspect, approaching the locationThis data set consists of a series of movement tracks of elk, deer and
of the bomb (presumably planting it) and then leaving (green line). cattle in a region in northeast Oregon [25]. The data set tracks in-



dividual animals using GIS (geographic information systems) and niques into current analysis tools. The traditional visualization in
comprises a series of variables associated with vegetation, waterabsolute coordinates is a needed view that retains the context of
soils and roads. The goal of this data base is to develop modelsthe data. Operations that demand accuracy in terms of the original
that help understand the behavior of free-range data in relation to frame of reference (such as latitude and longitude for time of day
the management of the habitat such as the effects of open roador climate changes in a geographical data set), are more effective in
through the environment. To analyze the behavior of individual their original space. Proximity-based tools, on the other hand, are
groups of animals, we use a proximity visualization that plots dis- more effective for operations that arevariantto the frame of ref-
tance to one of the water sources vs. time. Three examples carerence, such as movement patterns, derivatives (velocity anld acce
be seen in Figure 7, where we plot three subsets of the data, corre-eration) or the local impact of the environment (such as topography,
sponding to elk movement in 1993 (EIk93), deer movement in 1993 proximity to vegetation, food sources or water).

(Deer93) and cattle movement in 1995 (Cattle95). We can see from  One aspect of the use of proximity data is the pre-computation
these plots a series of typical behaviors for each species. Elk ap-time. When the proximity loci are known, this transformation is
pear to roam through the entire reserve, as seen fromithgation negligible as it consists of a constant number of operations. A more
in movement. We see a number of convergence patterns towardscostly operation is when we must compute the proximity of each
the middle of the time span, suggesting mating behavior, and diver- pair of points, which require@(nz) operations, whereis the num-
gence patterns towards the end. Deer, in contrast, do not roam ander of data points. In addition to the cost of computing the prox-
they appear more territorial. We can see this in the apparent con-imity, PCA introduces an additional cost. For extremely large data
stancy of their distances to the proximity locus. Cattle, on the other sets, this may become prohibitive. One alternative is to explore the
hand, exhibit a herd behavior, as seen by the concentration patterngroximity continuum to nd projections locally in regions of inter-
and group trends in their movement. We also see a meet patternsest (in both space and time), without requiring to analyze the entire
indicating a convergence point when cattle is herded from place to collection of points.

another, which coincided with a passage through one of the streams  \While we have applied the techniques in this paper to the track-

in the forest. Overall, proximity plots help us discoggobal pat- ing of people or animals, our techniques can be generalized to ab-
terns associated with each species, and steer our attention towardstract motion. For example, we can de ne an abstract space for the
local details such as mating and grouping. organization of documents, such that documents lie near each other

As suggested in one of their own studies, the researchers of thisif they have some topic or context in common. The more similar
habitat found that elk and deer behave differently in relation to the two documents are, the closer they appear in this abstract space.
vehicular traf ¢ through the open roads that cross the reserve [33]. Movement tracks can be associated with changes to the document.
We can visualize this too with proximity plots. In this case, the Therefore, emerging patterns in proximity space reveal trends in the
distance metric is not with respect to a point, but to entire regions, evolution of a document collection.
such as open roads. This is depicted in Figure 8, where we show
the map of the forest color coded with respect to distance to open;  concLusion
roads (black is closest and yellow to white for farthest from the ) o ) )
road). When we plot the proximity of elk (top) and deer (bottom) We have presenteq a general notion of proximity-based visualiza-
to roads, we see a predominance of elk to stay far from the roads,tion for the analysis of movement data. We have shown that de-
while deer seem to remain close. We even see a trend where elkiived quantities, such as proximity to a point or region, implies a
move away to less traf cked areas that seems to coincide with a dimensionality reduction that allows us to incorporate time as an-
movement of deer towards the traf cked areas. At a glance, this other dimension in a 2D plot, revealing global and local patterns
visualization provides us global knowledge about the entire time, dif cult to see through traditional means. Through a number of ex-
while still providing individual detail in the form of traces. This ~amples we see that, despite exhibiting interesting patterns in space-
behavior was explained asturbance competitigwhich suggests ~ time, proximity-based visualizations imply a change in the frame of
that the mere presence of population in a region (the elk away from reference, which may be dif cult to comprehend in isolation. For

traf ¢) annoys another population into leaving the area (the deer, this reason, we believe that these metaphors are better deployed
who have no choice but to move towards the traf c areas) [33]. in redundant coordinated views, where annotations and operations

in proximity-space should be re ected in the original view of the
physical space, and vice versa. The abstraction of spatio-temporal
data into proximities proves to be a potential tool for discovering
Exploring proximity based spaces has led to some interesting ob- patterns that may be missed by looking at an animation, or that
servations. We found that mapping points in a two dimensional may be obscured due to clutter. Other derivative information, such
space into an n-dimensional proximity space and back down to a as velocity and acceleration, are some of the dimensions that can
two dimensional space did not necessarily reveal much new infor- complement proximities towards more effective analysis.

mation. This is because the resulting visualization still requires to

_track movements in a 2D space, while time is_only represz_ante_d tac- A ckNOWLEDGEMENTS
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