Visibility-Driven Transfer Functions

Carlos D. Correa

Kwan-Liu Ma T

University of California, Davis

ABSTRACT
Direct volume rendering is an important tool for visualigioom-

plex data sets. However, in the process of generating 2Ddémag

from 3D data, information is lost in the form of attenuatiomda
occlusion. The lack of a feedback mechanism to quantify ale |
of information in the rendering process makes the desigroofig
transfer functions a dif cult and time consuming task. listhaper,
we present the notion of visibility-driven transfer furasts, which
are transfer functions that provide a good visibility oftfgas of
interest from a given viewpoint. To achieve this, we introglwvisi-
bility histograms. These histograms provide graphicakdbat in-
tuitively inform the user about the contribution of parfauscalar
values to the nal image. By carefully manipulating the pasters
of the opacity transfer function, users can now maximizevibe
bility of the intervals of interest in a volume data set. Bhea this

observation, we also propose a semi-automated method for g

erating transfer functions, which progressively improeegans-
fer function de ned by the user, according to a certain int@once

ef cient visualization. The transfer functions generatgith this
approach are then known collectively wasibility-driven transfer
functions We present several mechanisms for obtaining these. On
one hand, quantifying visibility helps the user to betterate and
re ne transfer functions from an initial speci cation to erthat
matches the relative visibility amount of the different gd@s. On
the other hand, visibility guides the semi-automatic gatien of
transfer functions, by replacing the tedious exploratibtransfer
function space by an automatic approach, which attemptsatd-m
mize the visibility of features of interest.

Our contributions are two-fold. On one hand, we presenti@not
of visibility histogram, which represents the visibility the sam-
ple values from a given viewpoint. These visibility histagrs pro-
vide a feedback mechanism for both manual and automatisferan
function design. Visibility histograms, however, are viend opac-

e ity dependent. Therefore, we present and compare two GRBEdba

algorithms for computing these histograms at interactites. On
the other hand, we show how visibility can be used to forneudat

metric. Now the user does not have to deal with the tedious tas OPJective function that is minimized whenever the disttion of

of making small changes to the transfer function parameters

visible samples matches a desired transfer function rgudghed

now he/she can rely on the system to perform these searches auPy the user. We present a mathematical formulation of tho®-pr

tomatically. Our methodology can be easily deployed in nvdst
sualization systems and can be used together with traditith

opacity transfer functions based on scalar values, as \wellith

multidimensional transfer functions and other more sdjtated

rendering algorithms.
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1 INTRODUCTION

Despite the proliferation of volume rendering softwares tlesign
of effective transfer functions is still a challenge. Thewing pop-
ularity of GPU-based volume renderers has advocated thefuse
more exploratory approach, where users can arrive at gaog-tr
fer functions via trial-and-error modi cation of opacitynd color
values. However, effective transfer functions are oftengroduct
of time-consuming tweaking of opacity parameters until timgea
desired quality metric, often subjective. One possibldanation
for this ad hoc methodology is the lack of an objective measor
quantify the quality of transfer functions. In this papeg propose
the use of a visibility metric, which attempts to measureithgact
of individual samples on the image generated by a volumetyic
ject. Visibility has been studied in the past, either to rueaghe
quality of a given viewpoint [2], or to enhance the rendepngcess
with ghost and cutaway views [24].

lem that can be solved with a variety of optimization alduris,
such as steepest descent and nonlinear conjugate graditdrids.
We show that this semi-automatic approach provides toolsht®
user to better manipulate the parameter space of the transie
tions. User can initiate linear searches of speci ¢ paransethat
converge to optimal solutions with respect to visibilityiflvout re-
quiring to manually tweak them. This direct manipulatiortrains-
fer function parameters is often a tedious task that inwiaaking
small changes to a set of parameters, sometimes impossipet-
ify by hand. Our approach can explore these subtle varigticore
ef ciently to provide the best solution to the user and beesran
important aid for volume exploration. Through a series @afreples
we show that our approach can be deployed in a variety of kisua
ization applications and can be customized quite easilgifterent
application requirements.

2 RELATED WORK

Transfer function design is an essential part of volumealiza-
tion. Approaches to this problem are often classi ed asegitlata-
or image-centric [17]. Data-centric approaches analyeestialar
eld and its properties to guide the design of transfer fimms.
The most commonly used is a 1D transfer function based oarscal
data value. Researchers have proposed higher-dimensiansier
functions based on rst and second derivatives of the voluinee,
gradient information [13, 10] and curvature [9, 11]. To aidthe
process of nding transfer functions these approachesafteke

In this paper, we present a more fundamental approach, whereuse of histograms, which represent graphically the distidn of

visibility is used as a primitive to quantify the quality afahs-
fer functions and ease their design towards more meanirgfdl
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values along the different dimensions. For 2D transfer tions,
for example, surfaces of interest appear as arcs. Kniss ¢12]
exploit this behavior to derive a set of manipulation widgas a
user interface. As more dimensions are added, the N-dimegisi
histogram becomes increasingly dif cult to understand arahip-
ulate. Lum and Ma use a variant of the 2D histogram with gratelie
aligned samples instead of rst derivatives. This led to féedént
graphical representation of the distribution of samplegmstre-
gions of different degree of homogeneity can be associaidd w
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Figure 1: Visibility histogram for two datasets. (a) The visibility histogram (purple plot) applied to a CT foot dataset reveals that the opacity
transfer function de ned by the user (red line strip) is not e ffective at highlighting the interval of interest (bone). This is due to esh tissue
occluding underneath layers. (b) The user then manipulates the opacity of the skin and esh intervals until the bone tiss ue has enough visibility.
The VH provides immediate feedback that helps the user converge to a solution. (c) For a tooth dataset, rendering of different isosurfaces
becomes a tedious approach. Similar to the case before, certain values occlude most of the important intervals (see the peak in the visibility
histogram). Rather than letting the user manipulate each interval, we run an algorithm that automatically searches along the parameter space
until the visibility of the surfaces of interest is maximized. The result is seen in (d). Notice how the most occluding intervals are made transparent.

different opacity and lighting parameters [14]. These apphes,
despite their popularity and ease of implementation, cacagture
spatial information that may provide a better visibility fefaitures
of interest. Roettger et al. propose a solution by grouppadially
connected regions in the 2D histograms used for classbod®0].
Lundstrom et al. suggest the use of local histograms [15¢poe-
sent the spatial distribution of scalar samples. As anratere to
histograms, Bajaj et al. propose the Contour Spectrum [khjchv
depicts a set of data attributes as a series of 1D plots foisfas
surfacing. As an alternative to these manual methods, lrgigt
al. propose a topology analysis to derive good transfertfons
automatically [7].
Unlike data-centric approaches, image-based methodsteper

ume rendering, as described by Bordoloi and Shen [2]. Irthei
paper, visibility is used to construct an entropy functibattguides
the selection of optimal viewpoints. A similar approachrisgosed

by Takahashi et al. [23], although a volume is now separattd i
feature components. In our paper, we use visibility in agatiom-
plementary way, which nds a transfer function with maximuis-
ibility from any given viewpoint.

The need for maximizing visibility of feature of importanbas
led to a number of techniques that operate in the renderiagesp
Non-photorealistic rendering (NPR) operators modulagedpac-
ity of samples in a view-dependent manner, increasing sibility
of otherwise occluded features [19]. Interactive cutanagisieve
visibility by removing occluding surfaces [4]. Importandgven

on the rendered images. He et al. use a stochastic approach tovolume rendering achieves a similar effect by mapping theoim

search good transfer functions given a set of rendered isnggje
Marks et al. present design galleries, which organize acbsetec-
tion of volume rendered images as the product of a serieandfer
functions. The user can explore the image-based spacesesneh
for satisfactory transfer functions [16]. Fang et al. diémcanother
image-based approach where a transfer function is de nedsas
quence of image operations whose parameters can be exjplpred
the user to achieve a desired classi cation [5]. Wu and Qu pro
posed a system that uses editing operations and stocheastahsof
the transfer function parameters to maximize the simjldrittween
volume-rendered images given by the user [25].

In all of the above, the issue of visibility is more a consetee
of transfer function design than a design parameter. Inghger,
we propose to use visibility to guide transfer function desifor
both manual and automatic searches. Image-based appsoaehe
ten recur to optimization approaches and stochastic sestohnd
good transfer functions [8, 16, 25]. Our approach is a dataric
approach with similar goal-oriented searches, where aectig
function, in our case in terms of visibility, is minimized.h& no-
tion of visibility has been used to nd optimal viewpointsrfeol-

tance of features to levels of sparseness, which controfisitality
of features [24]. Context-preserving volume rendering limas
NPR operations with the accumulated opacity, or visihilityre-
duce the opacity of unimportant objects [3]. By keeping krat
the accumulated opacity into a layered data structure, fSatkma
and Kolb propose opacity peeling, which helps reveal oadifda-
tures of interest via a multi-layer metaphor [18]. In our papve
follow a more fundamental approach, where visibility isarmo-
rated as part of the transfer function design process.

3 VISIBILITY HISTOGRAMS

The visibility of a sample refers to the contribution of a gdento
the nal image, in terms of opacity. This visibility is alsm&wn as
the accumulated opacity of a samgle

R
a(9=1 estOd )
wheret (t) is the attenuation coef cient of a sample, usually repre-
sented as an opacity transfer function Therefore, the visibility



Figure 2: Computation of visibility histograms. Given a viewpoint, the
total opacity of a given sample, computed as the product of the orig-
inal opacity and the transfer function and the accumulated opacity, is
added to the corresponding bin in the histogram.

of a sample depends on the opacity of the san{{s), usually de-
ned by the user, and the viewpoint, which affects the acclatea
opacity in front of the sample.

A visibility histogram (VH) represents graphically the wlibu-
tion of this visibility function in relation to the domain kees of
the volume. Traditional data histograms weight each savadlee
uniformly. For a visibility histogram, samples are weight®y vis-
ibility and added into bins that partition the range of valire the
scalar eld. For all sample valuesin a volumeV:

z

VH(X) = O(x) SZWd(s;x)(l a(9)ds 2
whered(s;x) is a function:
C R €

0 otherwise

In practice, the histogram is computed at discrete bins,thed
accumulated opacity is discretized with front-to-back positing
at discrete intervals. For a sampte

VH[X]= VH[X]+(1 a(9)0(x)
a(stDg)=(1 a(s)O(X)+ a(s)

(4)

Fig. 2 illustrates this process. Bordoloi et al. use a sinalg-
gregation of visibilities to weight the data histogram awtnpute
the entropy of a volume rendered image from a given viewpoint
[2]. However, since only the nal entropy is required, they dot
need to explicitly compute the visibility-weighted histag. In our
case, the histogram itself is important as a visual aid.

Visibility histograms help discover occlusion patterns the
data. For examplestrong occluders common in CT scans of
anatomical structures. tend to dominate the visibilitytrébsition.
If the occluder has a large enough opacity, it prevents tiskided
samples from being visible, making the histogram heavigwsid
towards the unoccluded values. Conversely, if the occlhdsra
suf ciently small opacity, the VH now shifts towards the nigwis-
ible samples. An example is shown in Fig. 3(a). In contrasnes
datasets exhibit a rather uniform distribution and no patdr in-
terval dominates in terms of visibility. These are commoaoédrtain
simulation data, where scalar values vary evenly in the dorda
example is shown in Fig. 3(b). In this case, changing the ibpac
of the different isosurfaces does not have a dramatic effieche
distribution of the visibility, which reveals that no stigoccluder
is present in the data.

3.1 GPU-assisted Computation

As described above, it becomes important to compute v tiis-
tograms at interactive rates. We have experimented withGRbu-
assisted implementations, based on gather and scatteatioper

(a) Occlusion signature on a CT foot dataset

(b) Occlusion signature on a ow simulation

Figure 3: Occlusion Signatures of two different datasets. (a) The sig-
nature on the histogram reveals the presence of a strong occluder. A
little opacity in the interval of the occluder has a dramatic effect in the
visibility of the hidden features. (b) The signature of this histogram
reveals that no interval in the scalar eld is a strong occlud er.

respectively. In both approaches, there is a rst pass wiredders
the volume from a given viewpoint using view-aligned slicEach
slice is used to compute the visibility values of its sampied com-
pute the accumulated opacity, which is in turn required Herriext
slice.

The difference of the two implementations is in the process o
gathering the visibility information of each slice. Our trapproach
is based on the approach by Fluck et al. [6]. This divides theen
area into tiles of 8 8 tiles. Since each pixel in the tile contains
up to 4 components, the tile is used to store a 256-bin hiatogr
Each component of this tile contains the contribution oibiiiy to
the sample value indicated by its position. For instance RGBA
components of the top left pixel in the tile contains thebiigy of
all samples with value;@;2 and 3, the next pixel those samples
with values 45;6 and 7, and so on. Hardware-supported blend-
ing adds the histograms of all the view-aligned slices. A&tehd,
the histogram is distributed along the different tiles. Ararchical
gathering approach adds up the local histograms, and thé igs
read back to the CPU.

After considering this approach, we turned to scatter djzers
on the GPU, which ease the implementation. Our implememtati
is based on the approach by Scheuermann and Hensley [21]. Eac
slice generated during the rst pass is sent to a vertex textu
vertex buffer, which is then used to render point primitiieshe
screen position corresponding to the bin in the histogranfterA
adding all the contributions of the different slices, thetbgram
can be transferred to the CPU by reading the screen area efva vi
port of size 1 N, whereN is the number of bins.

Fig. 4(a) shows a comparison of these two methods in terms
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Figure 4: Evaluation of GPU-based histogram algorithms. Timing
comparison between gather (red) and scatter algorithm (green) in
seconds (log scale) vs. size of view-dependent volume. Note that
scatter algorithm is faster for sampling rates less than 1=512

of speed. We computed the histogram at varying resolutiash
resolution indicates a window size where the histogramnsmgded
as well as a sampling resolution along the view direction. néve
ticed that our algorithm based on scatter operations wéesrftsan
the one based on gather for sizes up to%256his is consistent
with the results obtained by Scheuermann and Hensley [2 0o
images. However, the cost grows faster and, at a size of, 54
gather algorithm outperforms the scatter algorithm. Thisloe ex-
plained due to the differences in performance between xeartd
pixel processing capabilities in contemporary GPUs. Thhaga
operation works exclusively in pixel shaders, while thettgcaop-
eration uses point primitives and vertex shaders. For laizgs,
the vertex shader overhead overcomes the pixel shadereadrh
and we see a difference in performance. For this reason, ecgais
resolution of 258 to nd the VH. The effect on the resulting VH
is not dramatic, as can be seen in Fig.4(b). For smallerutsak,
though, the resulting VH is biased and scaled in a way thatapis
resents the true visibility of the sampled data values.

4 VISIBILITY-GUIDED TRANSFER FUNCTION DESIGN

Visibility histograms provide the basis for generatingiliiity-
driven transfer functions. A rst approach consists of a m&n
transfer function design with immediate feedback. As trer usa-
nipulates the opacity transfer functions, the VH shows #&r their
impact on the visibility distribution. An example is shownFkigs.
1(a-b). Initially, the opacity transfer function de ned llge user
seems to indicate more importance to bone tissue, but it epds
with little visibility as it is occluded by skin and tissue.itWa VH,
the user can now manipulate the parameters of the trangier fu
tion, in this case the size of a Gaussian bell, until the iligjtof
the bone is high enough. The result in Fig.1(b) shows a bd#er
piction of the three tissues with similar visibilities, ases in the
shape of the VH.

Figs. 1(c-d) shows a tooth dataset. In this case, the des$igm o
effective transfer function is complicated as the user duired to
manipulate more parameters, corresponding to a numbeosfris
faces of interest. We notice a similar behavior as in theiptey
case, where one group of tissues dominates visibility apdrth
ner tissues (such as the layers below the enamel and thesherve
are not visible at all. Reducing the opacity of the occludiisg
sue and the outer isosurfaces results in a much better mepaft
the inner layers. Although effective, manual control of thens-
fer function parameters becomes a tedious task as the nuwhber

Figure 5: Effect of sampling resolution. As the resolution of the view-
dependent slices decreases, the frequencies of the interval on the
right are scaled and biased, misrepresenting the actual visibility of
the sample values, measured as the visibility that would be obtained
at the Nyquist frequency (1=512in this example).

parameter increases, and as the resolution of the marigrulde-
creases. For example, notice how the sizes of the Gausdlamimze
so small that direct manipulation via mouse interactiorobges in-
creasingly dif cult. Due to the multiplicative nature oftahuation
in volume rendering, these little opacities may have a patite
effect in visibility. For this reason, we present a semieaustic
approach that attempts to automate the search of transfetidns
that maximize the visibility of important values.

4.1 Semi-automatic Transfer Function Design

As described above, small changes in the opacity of samples v
ues may change dramatically the visibility of occluded si@sipin
many cases, the user is required to perform minuscule ckahge
are almost impossible to make using mouse interaction. 1@ au
mate this process, we formulate the design of transfer fometas
an energy minimization problem.

First, we derive an energy function to represent the degirep-
erties of an effective transfer function. For this, we assufrat
there is an opacity functio®, de ned by the user, which repre-
sents the overall desired importance of a given data valbis.can
also be regarded as the initial transfer function. We cam atsain
this opacity function using alternative methods, for ins&® by in-
troducing pre-de ned transfer functions or by analyzing ithata
and/or its topology [7]. We also assume that the opacitytfanc
can be obtained as a function of a parameter ve@tdExamples of
parametric primitives are Gaussian, rectangular andguikan func-
tions, commonly supported in contemporary visualizatigstems.

We de ne the following energy components, designed to high-
light certain desired aspect of the transfer function:

User-satisfaction. To ensure user-satisfaction, we minimize the
mismatch between the computed opacity function and thénalig
one de ned by the user. The simplest way to represent this mis
match is via the square difference between the opacity ifome:t

Es(x Q) =(AXQ) 0O(x)? (5)

whereO(x) is the opacity function de ned by the user, aAk; Q)
is the opacity function derived by the system in terms of thaoity
parameter€).

Visibility. The second component is used to maximize the vis-
ibility of a given sample. Because not all the samples aralkggu
important, as de ned in the opacity functigd, we can weight the
visibility of a sample by its opacity:

Bv(xQ = OMX(1 a(xQ)) (6)

where a is the visibility of a sample, as de ned in Eq.1. Note
that the sign is negative, which is minimized as the vidipitf
important values increases.

Constraints. Finally, we introduce constraints on the param-
eter spac&). These constraints are used to control the minimum
and maximum values opacities of value intervals in the ngho-
ity function. This is particularly important for providingpntext in
the resulting image. Without constraints, it may be the ¢hae



simply making all unimportant values transparent reveadsimn-
portant ones. However, it provides little context. For epaham-
eter ing; 2 Q, we de ne an interval of desired valugg, Gmax-
The energy component is:
L i, h s
E(Q=a Gmin & ,* G OGmax Q)
I

where[X]+ is a clamping operation, such tHa}. = xif x> 0 or 0,
otherwise.

4.2 Optimization Algorithm

Once these components have been derived, we can de ne the pro
cess of transfer function design as a minimization problem,

arnginé_ b1E5(Q) + b2Ev(Q) + b3Ec(Q) 8)

whereby; b, and b are weighting parameters that allows the user
to give more importance to one component than the other.

To test and validate this formulation, we rst de ne the pare:
ter space as a mixture of Gaussians. That is, the opacityidums
is de ned as:

A= & aiGps (%) )

I

whereGps (X) is a Gaussian function of meanand standard de-
viation s. The parameter space correspond®te f m; s;g. This
model has the advantage that good transfer functions carbbe o
tained with a small number of parameters, and the Gausdlaff,fa
given by the standard deviation, prevents the appeararal@asing
artifacts.

To solve this minimization problem, we follow a greedy ap-
proach. Since the energy function cannot be easily derigegha
analytic function in general, nding a global optimum migte-
quire an exhaustive search of the parameter space, whiatodis p
hibitive. Instead, we use progressive search of the optimlakion
by exploring the parameter space in directions that gréyluia-
crease the energy functioQu+ 1 = Qx+ gLk, whereL g is a search
direction. A steepest direction approach goes in the diecip-
posite to the gradient of the enerdyy = NE. Unfortunately,
this method may result in zig-zagging effects around thénoat
solution which converge slowly. Alternatively, one can usalin-
ear conjugate gradient methods, which searches in direotionju-
gate to the ones previously explored, in an attempt to cgeverore
rapidly to the optimal solution. To avoid reaching a locahimium,
we may introduce a resetting mechanism to the conjugateegriad
method that allows it to move in the steepest direction wiitée |
improvement is achieved in a given conjugate direction. Afa-c
pared the results of both steepest descent and conjugatiemfra
as summarized in Fig.6 We see that conjugate gradients ignve
more rapidly to the optimal solution that steepest deseaaking
it more attractive for interactive systems.

4.3 Exploration of Transfer Function Space

Because there may be many different local minima in the param
ter space, these iterative algorithms cannot guarantemt@roge to
the optimal solution. Rather than performing an exhaustaearch,
we offer the user a mechanism to explore the parameter spate s
automatically. The user is able to specify a given paramsagrthe
amplitude or deviation of a Gaussian bell, and search fob#st
solution in a given direction. The system will search in ttiagc-
tion until a local minima is found. Since only a single paraenés
changed at a time, this is usually fast compared to re-opitiain.
Furthermore, the user can explore small variations of treciop
transfer function with little effort. This mechanism hashaised
to increase and decrease the opacity of speci ¢ isosurfedtss
out compromising much the visibility of important regior&ee the
accompanying video for examples.

120
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Figure 6: Convergence of different algorithms for transfer function op-
timization. We plot energy vs. number of iterations. Conjugate gradi-
ent reaches a good solution in less than 10 iterations while steepest
descent requires up to 5 times the number of iterations.

5 RESULTS

We applied our approach on a number of datasets, including
anatomical and ow simulation data. Fig. 7 shows the reséilt o
optimization for a foot dataset. From left to right, we shdve t
classi cation when shifting the weight on Eq. 8 from usersfat-
tion to visibility. In Fig.7(a), the system performs smdilamges on
the opacity function to match the user speci cation. Howelbene
tissues have little visibility. As the weights in the objeetfunction
become uniform (Fig.7(b)), the resulting opacity functiww pro-
vides visibility of the bone tissue, while satisfying theeuspacity
function. Notice how the skin and some tissue are still regméed,
while we get a clear view of the bone. Finally, Fig.7(c) shdhes
case where the weights favor visibility over user satisfectNow
the opacity of the skin is reduced considerably while esstie is
completely transparent. However, we obtain a high vigipdf the
bone tissue.

Fig. 8 shows the classi cation of a vortex dataset [22]. iiy,
the user sets the opacity function using a pre-de ned ctiiacof
Gaussian bells distributed along the data domain, and resdhe
desired opacity of entire intervals. We notice that impairtigo-
surfaces (green to orange area) become occluded by thefamEs
coded in blue. Fig.8(b) shows the result of automatic clessi
tion. The generated transfer function exhibits a falloffojpacity
for the unimportant isosurfaces so that visibility is attd for the
important intervals. The resulting image clearly shows itiver
features while providing the outer shape of the features @mna
text. Fig.8(c) shows the effect of shifting the importanaétte left
(outer layers of features). Note how the outer layers in beeome
more transparent, while the isosurfaces in green beconigeris

Fig. 9 shows the classi cation of a supernova dataset. dlhyti
the user sets the opacity as a number of Gaussian bells nedlida
a linear ramp, to highlight isosurfaces of increasing soadlue, in
this case entropy (Fig.9a). After optimization, the rasgltransfer
function provides better visibility to the inner layers g/). No-
tice how the resulting opacity approaches an exponentiaecto
counteract the multiplicative effect of attenuation. FR shows
the result after modifying the importance of certain ingdsv Af-
ter a few iterations, the resulting transfer function giveaximum
visibility to the inner layer (red). Since visibility-dran transfer
functions are viewpoint dependent, the user tries to adegphéew
opacity mapping to a different viewpoint (Fig.9d). The systis
able to increase the opacity of the isosurfaces in the bleerg
white region, since they do not affect much the visibilitytloé red
feature that now appears unoccluded from this vantage.point



(@) by = 0:05;,b, = 0:95

(b) bl = b2 =05

(c) by = 0:95,b, = 0:05

Figure 7: Three results of automatic classi cation of a CT fo ot dataset, depending on the optimization weights. (a) Giving more weight to
user satisfaction does not deviate much from the original user speci cation, but results in little visibility of import ant tissue (bone). (b) Uniform
weighting achieves a balance between user satisfaction and visibility. Now bone tissue is visible, while skin and esh tissue are still represented,
although with little opacity. (c) Finally, giving more weight to visibility allows the system to decrease the opacity of occluding tissue.

5.1 Limitations

Our approach proves to be a powerful mechanism for expldhag
transfer function space and avoid time-consuming trialemar it-
erations. However, the resulting transfer function id btiund by
the intrinsic limitations of the transfer function spacer fstance,
1D transfer functions may not help separate features ofdstéhat
share the same data values. Our approach will obtain a gaons-tr
fer function given a viewpoint and an initial transfer fuioct but
cannot help separate these any further, since the restilt & D
transfer function. Fortunately, our approach is not resgd to 1D
transfer functions. For a 2D transfer function based onasoall-
ues and gradient magnitude, we can derive a parameter §taeg
matches this space, for example, by including location entbiard
deviations in they direction.

An aspect of our approach is the introduction of interpalate
values in the VH. View-aligned rays sample the volume at-{posi

tions other than voxel centers, introducing interpolatatlies in
the histogram. Although these do not represent that acalaks
in the dataset, they describe the distribution of samplesl dier
post-classi cation, similar to obtaining a histogram onnac®thed
volume. Alternatives include using a shear-warp varianndg],
or using fractional values when computing the histogramothAear
limitation is the reliance on iterative algorithms to ndetloptimal
transfer function. Since the problem space can be concheset
methods may converge to local minima. Finding the globaiimmén
may prove to be dif cult and time-consuming, since it re@sirto
know the energy function to all possible combinations of plae
rameter values. Higher-order algorithms, such as Newt@phBon
may also be explored.

6 CONCLUSIONS
We have presented the concept of visibility-driven tranéfec-

The rst makes use of visibility histograms, which encode tlis-
tribution of visibility values from a given viewpoint. Thesond
method nds the best parameters of an opacity transfer fomct
that maximizes visibility of important features. The usevii-
bility histograms alone prove to be an important elementros
the understanding of complex datasets. On one hand, itqesvi
feedback to the user regarding the effectiveness of an tygaans-
fer function. On the other hand, it gives cues about the &trac
of the dataset and the distribution of visibility helps diger inter-
vals that result in more occlusion than others. The use dfility
histograms can also improve the understanding of otheritigus
such as view selection and importance-driven/cutawaymelten-
dering. In both cases, the notion of visibility is essefidhe
same. Our GPU-based technique to compute visibility hisiog
will provide a better feedback of the inner workings of suebh:
niques. The optimization approach was tested only on 1Gfean
functions, but they can be extended to higher-dimensiaaaist
fer functions. Furthermore, one can incorporate lightind giew-
dependent parameters to guide the creation of betterrdlis vi-
sualizations. We believe that this approach can help usrobte-
away and ghosted views of volumes semi-automatically, evttes
opacity of occluding surfaces is modi ed in a view-deperid®an-
ner to overcome the limitations of 1D transfer functions.c@ese
our approach computes the visibility histogram on a vieierded

manner, much in the way it is done for volume rendering, we be-

lieve that this can be implemented and deployed in conteanpor
visualization systems with little effort.
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Figure 8: Classi cation of vortex data. (a) The user sets the opacity function using a pre-de ned collection of Gaussian bells equally distributed
along the data domain. We notice that important isosurfaces (green to orange area) become occluded by the isosurfaces coded in blue. (b) The
automatically generated transfer function exhibits a falloff in opacity for the unimportant isosurfaces so that visibility is attained for the important
intervals. The resulting image shows the inner features while still providing context. (c) The user now shifts the importance to the interval
between blue and green isosurfaces. The outer layers in blue become more transparent, while the isosurfaces in green become visible.
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Figure 9: VDTF of the entropy of a supernova simulation. Highest entropy is red, the lowest blue. (a) The initial transfer function attempts to
depict a series of isosurfaces whose importance (opacity) increases linearly. We can see that most of the important surfaces are occluded by
the blue surface. (b) After optimization, the occluding surfaces are given low opacity, resulting in better visibility of the inner layers. The red
layers are still dif cult to observe, given that the user con siders all of these intervals as important. (c) The user then reduces the expected
opacity of the green and orange layers in an attempt to improve visibility. Rather than manually nding a good trade off, t he user lets the system
perform the search automatically. The resulting image now provides more visibility to the layers of interest (white and red). (d) Since VDTF are
view-dependent, the user now selects a different viewpoint. The system lets the user explore the transfer function space. Increasing the opacity
of unimportant layers (blue and green) is now possible since it does not affect much the visibility of the red layer, completely visible from this
vantage point.



