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ABSTRACT

Direct volume rendering is an important tool for visualizing com-
plex data sets. However, in the process of generating 2D images
from 3D data, information is lost in the form of attenuation and
occlusion. The lack of a feedback mechanism to quantify the loss
of information in the rendering process makes the design of good
transfer functions a dif�cult and time consuming task. In this paper,
we present the notion of visibility-driven transfer functions, which
are transfer functions that provide a good visibility of features of
interest from a given viewpoint. To achieve this, we introduce visi-
bility histograms. These histograms provide graphical cues that in-
tuitively inform the user about the contribution of particular scalar
values to the �nal image. By carefully manipulating the parameters
of the opacity transfer function, users can now maximize thevisi-
bility of the intervals of interest in a volume data set. Based on this
observation, we also propose a semi-automated method for gen-
erating transfer functions, which progressively improvesa trans-
fer function de�ned by the user, according to a certain importance
metric. Now the user does not have to deal with the tedious task
of making small changes to the transfer function parameters, but
now he/she can rely on the system to perform these searches au-
tomatically. Our methodology can be easily deployed in mostvi-
sualization systems and can be used together with traditional 1D
opacity transfer functions based on scalar values, as well as with
multidimensional transfer functions and other more sophisticated
rendering algorithms.
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1 INTRODUCTION

Despite the proliferation of volume rendering software, the design
of effective transfer functions is still a challenge. The growing pop-
ularity of GPU-based volume renderers has advocated the useof a
more exploratory approach, where users can arrive at good trans-
fer functions via trial-and-error modi�cation of opacity and color
values. However, effective transfer functions are often the product
of time-consuming tweaking of opacity parameters until meeting a
desired quality metric, often subjective. One possible explanation
for this ad hoc methodology is the lack of an objective measure to
quantify the quality of transfer functions. In this paper, we propose
the use of a visibility metric, which attempts to measure theimpact
of individual samples on the image generated by a volumetricob-
ject. Visibility has been studied in the past, either to measure the
quality of a given viewpoint [2], or to enhance the renderingprocess
with ghost and cutaway views [24].

In this paper, we present a more fundamental approach, where
visibility is used as a primitive to quantify the quality of trans-
fer functions and ease their design towards more meaningfuland
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ef�cient visualization. The transfer functions generatedwith this
approach are then known collectively asvisibility-driven transfer
functions. We present several mechanisms for obtaining these. On
one hand, quantifying visibility helps the user to better create and
re�ne transfer functions from an initial speci�cation to one that
matches the relative visibility amount of the different samples. On
the other hand, visibility guides the semi-automatic generation of
transfer functions, by replacing the tedious exploration of transfer
function space by an automatic approach, which attempts to maxi-
mize the visibility of features of interest.

Our contributions are two-fold. On one hand, we present a notion
of visibility histogram, which represents the visibility of the sam-
ple values from a given viewpoint. These visibility histograms pro-
vide a feedback mechanism for both manual and automatic transfer
function design. Visibility histograms, however, are viewand opac-
ity dependent. Therefore, we present and compare two GPU-based
algorithms for computing these histograms at interactive rates. On
the other hand, we show how visibility can be used to formulate an
objective function that is minimized whenever the distribution of
visible samples matches a desired transfer function roughly de�ned
by the user. We present a mathematical formulation of this prob-
lem that can be solved with a variety of optimization algorithms,
such as steepest descent and nonlinear conjugate gradient methods.
We show that this semi-automatic approach provides tools for the
user to better manipulate the parameter space of the transfer func-
tions. User can initiate linear searches of speci�c parameters that
converge to optimal solutions with respect to visibility, without re-
quiring to manually tweak them. This direct manipulation oftrans-
fer function parameters is often a tedious task that involves making
small changes to a set of parameters, sometimes impossible to spec-
ify by hand. Our approach can explore these subtle variations more
ef�ciently to provide the best solution to the user and becomes an
important aid for volume exploration. Through a series of examples
we show that our approach can be deployed in a variety of visual-
ization applications and can be customized quite easily fordifferent
application requirements.

2 RELATED WORK

Transfer function design is an essential part of volume visualiza-
tion. Approaches to this problem are often classi�ed as either data-
or image-centric [17]. Data-centric approaches analyze the scalar
�eld and its properties to guide the design of transfer functions.
The most commonly used is a 1D transfer function based on scalar
data value. Researchers have proposed higher-dimensionaltransfer
functions based on �rst and second derivatives of the volume, i.e.,
gradient information [13, 10] and curvature [9, 11]. To aid in the
process of �nding transfer functions these approaches often make
use of histograms, which represent graphically the distribution of
values along the different dimensions. For 2D transfer functions,
for example, surfaces of interest appear as arcs. Kniss et al. [12]
exploit this behavior to derive a set of manipulation widgets as a
user interface. As more dimensions are added, the N-dimensional
histogram becomes increasingly dif�cult to understand andmanip-
ulate. Lum and Ma use a variant of the 2D histogram with gradient-
aligned samples instead of �rst derivatives. This led to a different
graphical representation of the distribution of samples where re-
gions of different degree of homogeneity can be associated with
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Figure 1: Visibility histogram for two datasets. (a) The visibility histogram (purple plot) applied to a CT foot dataset reveals that the opacity
transfer function de�ned by the user (red line strip) is not e ffective at highlighting the interval of interest (bone). This is due to �esh tissue
occluding underneath layers. (b) The user then manipulates the opacity of the skin and �esh intervals until the bone tiss ue has enough visibility.
The VH provides immediate feedback that helps the user converge to a solution. (c) For a tooth dataset, rendering of different isosurfaces
becomes a tedious approach. Similar to the case before, certain values occlude most of the important intervals (see the peak in the visibility
histogram). Rather than letting the user manipulate each interval, we run an algorithm that automatically searches along the parameter space
until the visibility of the surfaces of interest is maximized. The result is seen in (d). Notice how the most occluding intervals are made transparent.

different opacity and lighting parameters [14]. These approaches,
despite their popularity and ease of implementation, cannot capture
spatial information that may provide a better visibility offeatures
of interest. Roettger et al. propose a solution by grouping spatially
connected regions in the 2D histograms used for classi�cation [20].
Lundström et al. suggest the use of local histograms [15] torepre-
sent the spatial distribution of scalar samples. As an alternative to
histograms, Bajaj et al. propose the Contour Spectrum [1], which
depicts a set of data attributes as a series of 1D plots for fast iso-
surfacing. As an alternative to these manual methods, Fujishiro et
al. propose a topology analysis to derive good transfer functions
automatically [7].

Unlike data-centric approaches, image-based methods operate
on the rendered images. He et al. use a stochastic approach to
search good transfer functions given a set of rendered images [8].
Marks et al. present design galleries, which organize a broad selec-
tion of volume rendered images as the product of a series of transfer
functions. The user can explore the image-based space in thesearch
for satisfactory transfer functions [16]. Fang et al. describe another
image-based approach where a transfer function is de�ned asa se-
quence of image operations whose parameters can be exploredby
the user to achieve a desired classi�cation [5]. Wu and Qu pro-
posed a system that uses editing operations and stochastic search of
the transfer function parameters to maximize the similarity between
volume-rendered images given by the user [25].

In all of the above, the issue of visibility is more a consequence
of transfer function design than a design parameter. In thispaper,
we propose to use visibility to guide transfer function design, for
both manual and automatic searches. Image-based approaches of-
ten recur to optimization approaches and stochastic searches to �nd
good transfer functions [8, 16, 25]. Our approach is a data-centric
approach with similar goal-oriented searches, where an objective
function, in our case in terms of visibility, is minimized. The no-
tion of visibility has been used to �nd optimal viewpoints for vol-

ume rendering, as described by Bordoloi and Shen [2]. In their
paper, visibility is used to construct an entropy function that guides
the selection of optimal viewpoints. A similar approach is proposed
by Takahashi et al. [23], although a volume is now separated into
feature components. In our paper, we use visibility in a rather com-
plementary way, which �nds a transfer function with maximumvis-
ibility from any given viewpoint.

The need for maximizing visibility of feature of importancehas
led to a number of techniques that operate in the rendering space.
Non-photorealistic rendering (NPR) operators modulate the opac-
ity of samples in a view-dependent manner, increasing the visibility
of otherwise occluded features [19]. Interactive cutawaysachieve
visibility by removing occluding surfaces [4]. Importance-driven
volume rendering achieves a similar effect by mapping the impor-
tance of features to levels of sparseness, which control thevisibility
of features [24]. Context-preserving volume rendering combines
NPR operations with the accumulated opacity, or visibility, to re-
duce the opacity of unimportant objects [3]. By keeping track of
the accumulated opacity into a layered data structure, Rezk-Salama
and Kolb propose opacity peeling, which helps reveal occluded fea-
tures of interest via a multi-layer metaphor [18]. In our paper, we
follow a more fundamental approach, where visibility is incorpo-
rated as part of the transfer function design process.

3 VISIBILITY HISTOGRAMS

The visibility of a sample refers to the contribution of a sample to
the �nal image, in terms of opacity. This visibility is also known as
the accumulated opacity of a samples:

a (s) = 1� e
RD

s t (t)dt (1)

wheret (t) is the attenuation coef�cient of a sample, usually repre-
sented as an opacity transfer functionO. Therefore, the visibility



Figure 2: Computation of visibility histograms. Given a viewpoint, the
total opacity of a given sample, computed as the product of the orig-
inal opacity and the transfer function and the accumulated opacity, is
added to the corresponding bin in the histogram.

of a sample depends on the opacity of the sample,O(s), usually de-
�ned by the user, and the viewpoint, which affects the accumulated
opacity in front of the sample.

A visibility histogram (VH) represents graphically the distribu-
tion of this visibility function in relation to the domain values of
the volume. Traditional data histograms weight each samplevalue
uniformly. For a visibility histogram, samples are weighted by vis-
ibility and added into bins that partition the range of values in the
scalar �eld. For all sample valuesx in a volumeV:

VH(x) = O(x)
Z

s2W
d(s;x)(1� a (s))ds (2)

whered(s;x) is a function:

d(s;x) =

(
1 V(s) = x
0 otherwise

(3)

In practice, the histogram is computed at discrete bins, andthe
accumulated opacity is discretized with front-to-back compositing
at discrete intervals. For a samples:

VH[x] = VH[x]+ ( 1� a (s))O(x) (4)

a (s+ Ds) = ( 1� a (s))O(x)+ a (s)

Fig. 2 illustrates this process. Bordoloi et al. use a similar ag-
gregation of visibilities to weight the data histogram and compute
the entropy of a volume rendered image from a given viewpoint
[2]. However, since only the �nal entropy is required, they do not
need to explicitly compute the visibility-weighted histogram. In our
case, the histogram itself is important as a visual aid.

Visibility histograms help discover occlusion patterns onthe
data. For example,strong occluders, common in CT scans of
anatomical structures. tend to dominate the visibility distribution.
If the occluder has a large enough opacity, it prevents the occluded
samples from being visible, making the histogram heavily skewed
towards the unoccluded values. Conversely, if the occluderhas a
suf�ciently small opacity, the VH now shifts towards the newly vis-
ible samples. An example is shown in Fig. 3(a). In contrast, some
datasets exhibit a rather uniform distribution and no particular in-
terval dominates in terms of visibility. These are common incertain
simulation data, where scalar values vary evenly in the domain. An
example is shown in Fig. 3(b). In this case, changing the opacity
of the different isosurfaces does not have a dramatic effecton the
distribution of the visibility, which reveals that no strong occluder
is present in the data.

3.1 GPU-assisted Computation

As described above, it becomes important to compute visibility his-
tograms at interactive rates. We have experimented with twoGPU-
assisted implementations, based on gather and scatter operations

(a) Occlusion signature on a CT foot dataset

(b) Occlusion signature on a �ow simulation

Figure 3: Occlusion Signatures of two different datasets. (a) The sig-
nature on the histogram reveals the presence of a strong occluder. A
little opacity in the interval of the occluder has a dramatic effect in the
visibility of the hidden features. (b) The signature of this histogram
reveals that no interval in the scalar �eld is a strong occlud er.

respectively. In both approaches, there is a �rst pass whichrenders
the volume from a given viewpoint using view-aligned slices. Each
slice is used to compute the visibility values of its samplesand com-
pute the accumulated opacity, which is in turn required for the next
slice.

The difference of the two implementations is in the process of
gathering the visibility information of each slice. Our �rst approach
is based on the approach by Fluck et al. [6]. This divides the screen
area into tiles of 8� 8 tiles. Since each pixel in the tile contains
up to 4 components, the tile is used to store a 256-bin histogram.
Each component of this tile contains the contribution of visibility to
the sample value indicated by its position. For instance, the RGBA
components of the top left pixel in the tile contains the visibility of
all samples with value 0;1;2 and 3, the next pixel those samples
with values 4;5;6 and 7, and so on. Hardware-supported blend-
ing adds the histograms of all the view-aligned slices. At the end,
the histogram is distributed along the different tiles. A hierarchical
gathering approach adds up the local histograms, and the result is
read back to the CPU.

After considering this approach, we turned to scatter operations
on the GPU, which ease the implementation. Our implementation
is based on the approach by Scheuermann and Hensley [21]. Each
slice generated during the �rst pass is sent to a vertex texture or
vertex buffer, which is then used to render point primitivesin the
screen position corresponding to the bin in the histogram. After
adding all the contributions of the different slices, the histogram
can be transferred to the CPU by reading the screen area of a view
port of size 1� N, whereN is the number of bins.

Fig. 4(a) shows a comparison of these two methods in terms
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Figure 4: Evaluation of GPU-based histogram algorithms. Timing
comparison between gather (red) and scatter algorithm (green) in
seconds (log scale) vs. size of view-dependent volume. Note that
scatter algorithm is faster for sampling rates less than 1=512.

of speed. We computed the histogram at varying resolutions.Each
resolution indicates a window size where the histogram is computed
as well as a sampling resolution along the view direction. Weno-
ticed that our algorithm based on scatter operations was faster than
the one based on gather for sizes up to 2563. This is consistent
with the results obtained by Scheuermann and Hensley [21] for 2D
images. However, the cost grows faster and, at a size of 5123, the
gather algorithm outperforms the scatter algorithm. This can be ex-
plained due to the differences in performance between vertex and
pixel processing capabilities in contemporary GPUs. The gather
operation works exclusively in pixel shaders, while the scatter op-
eration uses point primitives and vertex shaders. For largesizes,
the vertex shader overhead overcomes the pixel shader overhead
and we see a difference in performance. For this reason, we used a
resolution of 2563 to �nd the VH. The effect on the resulting VH
is not dramatic, as can be seen in Fig.4(b). For smaller resolutions,
though, the resulting VH is biased and scaled in a way that misrep-
resents the true visibility of the sampled data values.

4 VISIBILITY -GUIDED TRANSFER FUNCTION DESIGN

Visibility histograms provide the basis for generating visibility-
driven transfer functions. A �rst approach consists of a manual
transfer function design with immediate feedback. As the user ma-
nipulates the opacity transfer functions, the VH shows the user their
impact on the visibility distribution. An example is shown in Figs.
1(a-b). Initially, the opacity transfer function de�ned bythe user
seems to indicate more importance to bone tissue, but it endsup
with little visibility as it is occluded by skin and tissue. With a VH,
the user can now manipulate the parameters of the transfer func-
tion, in this case the size of a Gaussian bell, until the visibility of
the bone is high enough. The result in Fig.1(b) shows a betterde-
piction of the three tissues with similar visibilities, as seen in the
shape of the VH.

Figs. 1(c-d) shows a tooth dataset. In this case, the design of an
effective transfer function is complicated as the user is required to
manipulate more parameters, corresponding to a number of isosur-
faces of interest. We notice a similar behavior as in the previous
case, where one group of tissues dominates visibility and the in-
ner tissues (such as the layers below the enamel and the nerves)
are not visible at all. Reducing the opacity of the occludingtis-
sue and the outer isosurfaces results in a much better depiction of
the inner layers. Although effective, manual control of thetrans-
fer function parameters becomes a tedious task as the numberof

Figure 5: Effect of sampling resolution. As the resolution of the view-
dependent slices decreases, the frequencies of the interval on the
right are scaled and biased, misrepresenting the actual visibility of
the sample values, measured as the visibility that would be obtained
at the Nyquist frequency (1=512 in this example).

parameter increases, and as the resolution of the manipulation de-
creases. For example, notice how the sizes of the Gaussian bells are
so small that direct manipulation via mouse interaction becomes in-
creasingly dif�cult. Due to the multiplicative nature of attenuation
in volume rendering, these little opacities may have a noticeable
effect in visibility. For this reason, we present a semi-automatic
approach that attempts to automate the search of transfer functions
that maximize the visibility of important values.

4.1 Semi-automatic Transfer Function Design

As described above, small changes in the opacity of samples val-
ues may change dramatically the visibility of occluded samples. In
many cases, the user is required to perform minuscule changes that
are almost impossible to make using mouse interaction. To auto-
mate this process, we formulate the design of transfer functions as
an energy minimization problem.

First, we derive an energy function to represent the desiredprop-
erties of an effective transfer function. For this, we assume that
there is an opacity functionO, de�ned by the user, which repre-
sents the overall desired importance of a given data value. This can
also be regarded as the initial transfer function. We can also obtain
this opacity function using alternative methods, for instance, by in-
troducing pre-de�ned transfer functions or by analyzing the data
and/or its topology [7]. We also assume that the opacity function
can be obtained as a function of a parameter vectorQ. Examples of
parametric primitives are Gaussian, rectangular and triangular func-
tions, commonly supported in contemporary visualization systems.

We de�ne the following energy components, designed to high-
light certain desired aspect of the transfer function:

User-satisfaction. To ensure user-satisfaction, we minimize the
mismatch between the computed opacity function and the original
one de�ned by the user. The simplest way to represent this mis-
match is via the square difference between the opacity functions:

ES(x;Q) = ( A(x;Q) � O(x)) 2 (5)

whereO(x) is the opacity function de�ned by the user, andA(x;Q)
is the opacity function derived by the system in terms of the opacity
parametersQ.

Visibility. The second component is used to maximize the vis-
ibility of a given sample. Because not all the samples are equally
important, as de�ned in the opacity functionO, we can weight the
visibility of a sample by its opacity:

EV (x;Q) = � O(x)(1� a (x;Q)) (6)

wherea is the visibility of a sample, as de�ned in Eq.1. Note
that the sign is negative, which is minimized as the visibility of
important values increases.

Constraints. Finally, we introduce constraints on the param-
eter spaceQ. These constraints are used to control the minimum
and maximum values opacities of value intervals in the �nal opac-
ity function. This is particularly important for providingcontext in
the resulting image. Without constraints, it may be the casethat



simply making all unimportant values transparent reveals the im-
portant ones. However, it provides little context. For eachparam-
eter inqi 2 Q, we de�ne an interval of desired values[q i

min;q
i
max].

The energy component is:

EC(Q) = å
i

h
q i

min � qi

i 2

+
+

h
qi � q i

max

i 2

+
(7)

where[x]+ is a clamping operation, such that[x]+ = x if x > 0 or 0,
otherwise.

4.2 Optimization Algorithm

Once these components have been derived, we can de�ne the pro-
cess of transfer function design as a minimization problem,

argmin
Q

å b1ES(Q)+ b2EV (Q)+ b3EC(Q) (8)

whereb1;b2 andb3 are weighting parameters that allows the user
to give more importance to one component than the other.

To test and validate this formulation, we �rst de�ne the parame-
ter space as a mixture of Gaussians. That is, the opacity function A
is de�ned as:

A(x) = å
i

a iGmi ;s i (x) (9)

whereGm;s (x) is a Gaussian function of meanmand standard de-
viation s . The parameter space corresponds toQ = f mi ;s ig. This
model has the advantage that good transfer functions can be ob-
tained with a small number of parameters, and the Gaussian falloff,
given by the standard deviation, prevents the appearance ofaliasing
artifacts.

To solve this minimization problem, we follow a greedy ap-
proach. Since the energy function cannot be easily derived as an
analytic function in general, �nding a global optimum mightre-
quire an exhaustive search of the parameter space, which is pro-
hibitive. Instead, we use progressive search of the optimalsolution
by exploring the parameter space in directions that gradually de-
crease the energy function,Qk+ 1 = Qk + gL k, whereL k is a search
direction. A steepest direction approach goes in the direction op-
posite to the gradient of the energy,L k = � ÑE. Unfortunately,
this method may result in zig-zagging effects around the optimal
solution which converge slowly. Alternatively, one can usenonlin-
ear conjugate gradient methods, which searches in directions conju-
gate to the ones previously explored, in an attempt to converge more
rapidly to the optimal solution. To avoid reaching a local minimum,
we may introduce a resetting mechanism to the conjugate gradient
method that allows it to move in the steepest direction when little
improvement is achieved in a given conjugate direction. We com-
pared the results of both steepest descent and conjugate gradient,
as summarized in Fig.6 We see that conjugate gradients converge
more rapidly to the optimal solution that steepest descent,making
it more attractive for interactive systems.

4.3 Exploration of Transfer Function Space

Because there may be many different local minima in the parame-
ter space, these iterative algorithms cannot guarantee to converge to
the optimal solution. Rather than performing an exhaustivesearch,
we offer the user a mechanism to explore the parameter space semi-
automatically. The user is able to specify a given parameter, say the
amplitude or deviation of a Gaussian bell, and search for thebest
solution in a given direction. The system will search in thatdirec-
tion until a local minima is found. Since only a single parameter is
changed at a time, this is usually fast compared to re-optimization.
Furthermore, the user can explore small variations of the opacity
transfer function with little effort. This mechanism has been used
to increase and decrease the opacity of speci�c isosurfaceswith-
out compromising much the visibility of important regions.See the
accompanying video for examples.
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Figure 6: Convergence of different algorithms for transfer function op-
timization. We plot energy vs. number of iterations. Conjugate gradi-
ent reaches a good solution in less than 10 iterations while steepest
descent requires up to 5 times the number of iterations.

5 RESULTS

We applied our approach on a number of datasets, including
anatomical and �ow simulation data. Fig. 7 shows the result of
optimization for a foot dataset. From left to right, we show the
classi�cation when shifting the weight on Eq. 8 from user satisfac-
tion to visibility. In Fig.7(a), the system performs small changes on
the opacity function to match the user speci�cation. However, bone
tissues have little visibility. As the weights in the objective function
become uniform (Fig.7(b)), the resulting opacity functionnow pro-
vides visibility of the bone tissue, while satisfying the user opacity
function. Notice how the skin and some tissue are still represented,
while we get a clear view of the bone. Finally, Fig.7(c) showsthe
case where the weights favor visibility over user satisfaction. Now
the opacity of the skin is reduced considerably while �esh tissue is
completely transparent. However, we obtain a high visibility of the
bone tissue.

Fig. 8 shows the classi�cation of a vortex dataset [22]. Initially,
the user sets the opacity function using a pre-de�ned collection of
Gaussian bells distributed along the data domain, and modi�es the
desired opacity of entire intervals. We notice that important iso-
surfaces (green to orange area) become occluded by the isosurfaces
coded in blue. Fig.8(b) shows the result of automatic classi�ca-
tion. The generated transfer function exhibits a falloff inopacity
for the unimportant isosurfaces so that visibility is attained for the
important intervals. The resulting image clearly shows theinner
features while providing the outer shape of the features as acon-
text. Fig.8(c) shows the effect of shifting the importance to the left
(outer layers of features). Note how the outer layers in bluebecome
more transparent, while the isosurfaces in green become visible.

Fig. 9 shows the classi�cation of a supernova dataset. Initially,
the user sets the opacity as a number of Gaussian bells modulated in
a linear ramp, to highlight isosurfaces of increasing scalar value, in
this case entropy (Fig.9a). After optimization, the resulting transfer
function provides better visibility to the inner layers (Fig.9). No-
tice how the resulting opacity approaches an exponential curve, to
counteract the multiplicative effect of attenuation. Fig.9c shows
the result after modifying the importance of certain intervals. Af-
ter a few iterations, the resulting transfer function givesmaximum
visibility to the inner layer (red). Since visibility-driven transfer
functions are viewpoint dependent, the user tries to adapt the new
opacity mapping to a different viewpoint (Fig.9d). The system is
able to increase the opacity of the isosurfaces in the blue-green-
white region, since they do not affect much the visibility ofthe red
feature that now appears unoccluded from this vantage point.



(a) b1 = 0:05;b2 = 0:95 (b)b1 = b2 = 0:5 (c) b1 = 0:95;b2 = 0:05

Figure 7: Three results of automatic classi�cation of a CT fo ot dataset, depending on the optimization weights. (a) Giving more weight to
user satisfaction does not deviate much from the original user speci�cation, but results in little visibility of import ant tissue (bone). (b) Uniform
weighting achieves a balance between user satisfaction and visibility. Now bone tissue is visible, while skin and �esh t issue are still represented,
although with little opacity. (c) Finally, giving more weight to visibility allows the system to decrease the opacity of occluding tissue.

5.1 Limitations

Our approach proves to be a powerful mechanism for exploringthe
transfer function space and avoid time-consuming trial anderror it-
erations. However, the resulting transfer function is still bound by
the intrinsic limitations of the transfer function space. For instance,
1D transfer functions may not help separate features of interest that
share the same data values. Our approach will obtain a good trans-
fer function given a viewpoint and an initial transfer function but
cannot help separate these any further, since the result is still a 1D
transfer function. Fortunately, our approach is not restricted to 1D
transfer functions. For a 2D transfer function based on scalar val-
ues and gradient magnitude, we can derive a parameter spaceQ that
matches this space, for example, by including location and standard
deviations in they direction.

An aspect of our approach is the introduction of interpolated
values in the VH. View-aligned rays sample the volume at posi-
tions other than voxel centers, introducing interpolated values in
the histogram. Although these do not represent that actual values
in the dataset, they describe the distribution of samples used for
post-classi�cation, similar to obtaining a histogram on a smoothed
volume. Alternatives include using a shear-warp variant asin [2],
or using fractional values when computing the histogram. Another
limitation is the reliance on iterative algorithms to �nd the optimal
transfer function. Since the problem space can be concave, these
methods may converge to local minima. Finding the global minima
may prove to be dif�cult and time-consuming, since it requires to
know the energy function to all possible combinations of thepa-
rameter values. Higher-order algorithms, such as Newton-Raphson
may also be explored.

6 CONCLUSIONS

We have presented the concept of visibility-driven transfer func-
tions. We provided two methods, one manual and one automatic.

The �rst makes use of visibility histograms, which encode the dis-
tribution of visibility values from a given viewpoint. The second
method �nds the best parameters of an opacity transfer function
that maximizes visibility of important features. The use ofvisi-
bility histograms alone prove to be an important element towards
the understanding of complex datasets. On one hand, it provides
feedback to the user regarding the effectiveness of an opacity trans-
fer function. On the other hand, it gives cues about the structure
of the dataset and the distribution of visibility helps discover inter-
vals that result in more occlusion than others. The use of visibility
histograms can also improve the understanding of other algorithms
such as view selection and importance-driven/cutaway volume ren-
dering. In both cases, the notion of visibility is essentially the
same. Our GPU-based technique to compute visibility histograms
will provide a better feedback of the inner workings of such tech-
niques. The optimization approach was tested only on 1D transfer
functions, but they can be extended to higher-dimensional trans-
fer functions. Furthermore, one can incorporate lighting and view-
dependent parameters to guide the creation of better illustrative vi-
sualizations. We believe that this approach can help us obtain cut-
away and ghosted views of volumes semi-automatically, where the
opacity of occluding surfaces is modi�ed in a view-dependent man-
ner to overcome the limitations of 1D transfer functions. Because
our approach computes the visibility histogram on a view-oriented
manner, much in the way it is done for volume rendering, we be-
lieve that this can be implemented and deployed in contemporary
visualization systems with little effort.
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Figure 8: Classi�cation of vortex data. (a) The user sets the opacity function using a pre-de�ned collection of Gaussian bells equally distributed
along the data domain. We notice that important isosurfaces (green to orange area) become occluded by the isosurfaces coded in blue. (b) The
automatically generated transfer function exhibits a falloff in opacity for the unimportant isosurfaces so that visibility is attained for the important
intervals. The resulting image shows the inner features while still providing context. (c) The user now shifts the importance to the interval
between blue and green isosurfaces. The outer layers in blue become more transparent, while the isosurfaces in green become visible.

REFERENCES

[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum.
In Proc. IEEE Visualization 1997, pages 167–173, 1997.

[2] U. Bordoloi and H.-W. Shen. View selection for volume rendering. In
Proc. IEEE Visualization 2005, pages 487–494, Oct. 2005.

[3] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Groller. Illustrative
context-preserving exploration of volume data.IEEE Trans. on Visu-
alization and Computer Graphics, 12(6):1559–1569, 2006.

[4] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive Cutaway Illustra-
tions. Computer Graphics Forum, 22(3):523–532, 2003.

[5] S. Fang, T. Biddlecome, and M. Tuceryan. Image-based transfer func-
tion design for data exploration in volume visualization. In Proc. IEEE
Visualization 1998, pages 319–326, 1998.

[6] O. Fluck, S. Aharon, D. Cremers, and M. Rousson. GPU histogram
computation. InSIGGRAPH '06: ACM SIGGRAPH 2006 Research
posters, page 53, 2006.

[7] I. Fujishiro, T. Azuma, and Y. Takeshima. Automating transfer func-
tion design for comprehensible volume rendering based on 3d�eld
topology analysis. InProc. IEEE Visualization 1999, pages 467–470,
1999.

[8] T. He, L. Hong, A. Kaufman, and H. P�ster. Generation of transfer
functions with stochastic search techniques. InProc. IEEE Visualiza-
tion 1996, pages 227–234, 1996.

[9] J. Hlad	uvka, A. König, and E. Gröller. Curvature-based transfer func-
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Figure 9: VDTF of the entropy of a supernova simulation. Highest entropy is red, the lowest blue. (a) The initial transfer function attempts to
depict a series of isosurfaces whose importance (opacity) increases linearly. We can see that most of the important surfaces are occluded by
the blue surface. (b) After optimization, the occluding surfaces are given low opacity, resulting in better visibility of the inner layers. The red
layers are still dif�cult to observe, given that the user con siders all of these intervals as important. (c) The user then reduces the expected
opacity of the green and orange layers in an attempt to improve visibility. Rather than manually �nding a good trade off, t he user lets the system
perform the search automatically. The resulting image now provides more visibility to the layers of interest (white and red). (d) Since VDTF are
view-dependent, the user now selects a different viewpoint. The system lets the user explore the transfer function space. Increasing the opacity
of unimportant layers (blue and green) is now possible since it does not affect much the visibility of the red layer, completely visible from this
vantage point.


