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Abstract —Much of the visualization research has focused on improving the rendering quality and speed, and enhancing the percep-
tibility of features in the data. Recently, signi�cant emphasis has been placed on focus+context (F+C) techniques (e.g., �she ye views
and magni�cation lens) for data exploration in addition to viewing transformation and hierarchical navigation. However, most of the
existing data exploration techniques rely on the manipulation of viewing attributes of the rendering system or optical attributes of the
data objects, with users being passive viewers. In this paper, we propose a more active approach to data exploration, which attempts
to mimic how we would explore data if we were able to hold it and interact with it in our hands. This involves allowing the users to
physically or actively manipulate the geometry of a data object. While this approach has been traditionally used in applications, such
as surgical simulation, where the original geometry of the data objects is well understood by the users, there are several challenges
when this approach is generalized for applications, such as �o w and information visualization, where there is no common perception
as to the normal or natural geometry of a data object. We introduce a taxonomy and a set of transformations especially for illustrative
deformation of general data exploration. We present combined geometric or optical illustration operators for focus+context visualiza-
tion, and examine the best means for preventing the deformed context from being misperceived. We demonstrated the feasibility of
this generalization with examples of �o w, information and video visualization.

Index Terms —Volume deformation, focus+context visualization, interaction techniques
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1 INTRODUCTION

The purposeof visualizationis to gain insight of complex structures
throughimagesandinteractions.Oneprimaryobjective of visualiza-
tion is to aid us in building a spatio-temporalmentalmodelof a phe-
nomenon,processor physicalquantity. Thetools thatwe have in 3D
dataexplorationto help build a mentalmodeltypically includereal-
timerendering,view transformation,transferfunctions,segmentations
andacollectionof focus+context (F+C)techniques.However, mostof
thesemethodsareactivein “viewing” but passivein “handling”,which
is quitedifferentfrom oureverydayactivities for exploringacomplex
or unfamiliar object. With theprevalenceof 3D visualizationfar and
wide,it is importanttoexplorenew methodologies,whichcanenhance
ourcomprehensionandunderstandingof data,andenableusto build a
mentalmodelef�ciently andaccuratelywith active“handling” aswell
as“viewing”.

In science,engineering,medicineandeducation,hand-drawn illus-
trationsoftenincludetwo classesof elucidativemethods.Firstly, mul-
tiple artisticpaintingstylesarecommonlyemployedto enhance,hide
or emphasizedifferent featuresof the object. This observation has
led to a numberof F+C techniquesin visualization,suchascutaway
views [11], ghosting[2] andimportance-driven rendering[28]. Sec-
ondly, deformationis sometimesappliedto partsof anobjectin order
todepictthestagesandtheoutcomesof aprocedure,touncoverhidden
features,or to reveal thespatialrelationshipsbetweendifferentcom-
ponentsof theobject.Thisobservationhasled to computer-generated
surgical illustrations[8].

The aim of this work is to combinethesetwo classesof elucida-
tive methodsinto a single interactive framework, for the generation
of effective F+C visualization,andto deploy the framework for data
explorationin awiderangeof applications.Wecall this framework il-
lustrativedeformation, in thesensethatit is inspiredby hand-drawn il-
lustrations,andenablesdepictionof focusandcontext throughacom-
binationof renderingstylesandgeometrictransformations.
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Thereareseveralchallengesin producingeffective F+C visualiza-
tion usingillustrativedeformation.Theseinclude:

Generalization— It is highly desirableto haveacommontechnical
framework for avarietyof applicationsanddatatypessuchasdiscrete
points,lines,surfacesandvolumes.Following thetaxonomyby Tory
andMöller [25], a generalframework shouldsupportbothcontinuous
data(suchasavolume)anddiscretedata(suchaspointsandlines).

GeometricIntegrity — Therehasbeena reluctanceto employ de-
formationto scienti�c datafor fear that it would preventaccuratein-
terpretationof thedata.We believe that,on thecontrary, with careful
marking-upof contextual structures,andmaintainingthe integrity of
thegeometricandopticalpropertiesof featureof interest,illustrative
deformationcan aid datainterpretationwithout leadingto incorrect
interpretation.

Interactivity — It is highly desirableto allow usersto exploredata
interactively. Becausethis explorationbecomesan active manipula-
tion of data,it is importantto provide interactionfeedbackandcues
of themanipulationto theuser. Thesechallengesarethefocusof this
paper. Our maincontributionsare: (1) we introducea novel approach
to illustrative deformation,whichenablesfocuspreservationandcon-
text mark-up,basedon a combinationof multiple geometricandopti-
cal transformations.This is anew interactiveF+Ctechnique,allowing
deformation-baseddataexplorationto bedeployedin scienti�c andin-
formationvisualization,in additionto its traditionalapplications,such
assurgical illustration (2) We presenta generalizedtechnicalframe-
work that supportsthe illustrative deformationof discretedatausing
deformableimplicit representations.This framework allows seamless
integrationof continuousanddiscreterepresentations,facilitatescom-
plex opticalandgeometrictransformationsondiscretedatawithoutre-
quiringcomplex geometryintersectiontests,andoffersunprecedented
scalabilitywhencomparedto explicit representations.Wealsopresent
anovelmechanismfor ensuringthegeometricintegrity of discretedata
whenundergoingdeformation.We show how theseoperationscanbe
implementedin traditionalrenderingpipelines,andin contemporary
GPUs. (3) We demonstratethe effectivenessandfeasibility through
novel applicationof illustrative deformationin �o w, videoandinfor-
mationvisualization. The initial feedbackfrom potentialusersindi-
catesthat this new techniqueprovidesan intuitive meansfor actively
exploringdataandconstitutesanimportantaidfor scienti�c visualiza-
tion

2 RELATED WORK

An effective meansfor dataexplorationis theuseof F+C techniques,
which highlight focal objectsin detailwhile depictingcontextual ob-



jectsin brief to provide anoverview. F+Ctechniques,suchas�sheye
views [21], perspective wall [17], hyperbolic space[19] and rubber
sheets[22], have beendeployedextensively in informationvisualiza-
tion.

F+C visualizationis an intrinsic partof volumevisualization.In a
broadersense,without a F+C visualization,a volumedatasetis just
a solid volume cuboid containinga mixture of meaningfuland in-
signi�cant information. Solutionsthat rely on the manipulationop-
tical attributesand renderingstylesinclude: Selectiverenderingal-
lows the visualizationof speci�cally selectedpartsof an object to
enhancevisibility of occludedparts. Fundamentally, the manipula-
tion of transferfunctions(e.g., [12, 14]) is a meansfor re-balancing
partsof volumedatain the focusandthosein the context by chang-
ing theopticalattributes. Othertechniquesthat involve moreseman-
tic selectionincludevolumedecomposition[24], andopacitypeeling
[20]. Non-photorealistic techniques(e.g.,[26, 16]) enabledifference
emphasesto be renderedin differentillustrative renderingstyles,es-
pecially whenillustrative renderingstylesarecombinedwith photo-
realisticstylesin thesamevisualization.Cutawayandghostedviews
allow occludedobjectsto berenderedby fading[28, 27] or removing
[11,30,3] occludingparts.Magic lensesallow thechangingof thepa-
rametersof theviewing systemto magnify thedesiredfeatures,such
asin [29, 15,5].

Theabove-mentionedF+C techniquesrely on themanipulationof
viewing attributesof therenderingengineandopticalattributesof the
dataobjects.Somesolutionscannoteffectively resolve theocclusion
problem. Otherscan,but at thecostof decreasingtheusefulcontex-
tual information.Oftenthecontextual informationis completelysup-
pressed.Theuseof deformationin volumetricobjectshasbeenpro-
posedfor animation,visualizationandasa tool for computergraphics
in general[6]. Most of previous approachesenablecontinuousde-
formationof biomedicalobjects. Recentapproachesallow cutting a
datasetusing3D widgets[18], the generationof surgical cuts [8] or
explodedviews [4] by allowing breaksin therenderingof volumeob-
jects.In suchapproaches,deformationis consideredstrictly ageomet-
ric transformationproblem.Opticalpropertiesof thedeformedobject
areusuallyde�ned to preserve the original optical propertiesof the
undeformedobject.

Illustrativedeformation, discussedin thispaper, attemptstobalance
thevisibility of importantparts(or focusof attention), while maintain-
ing contextual information,by usingacombinationof opticaltransfor-
mationsanddeformationinteractively. Consideringdeformationand
optical transformationsas interdependentoperationshasseveral ad-
vantages:First, optical transformationscanbeusedasa visual feed-
backof thedeformation.Second,becausedeformationalonemaynot
solve the occlusionproblem,optical transformationscanbe usedin
combinationwith deformationso that contextual information is still
present. Previous approachesto volume deformationusually apply
thetransformationwith little regardsto thefeaturesof interest.In our
approach,deformationsareappliedin a feature-sensitive manner. It
canpreserve the visual integrity of focusfeatures,while markingup
contextualfeatures.It canbeappliedto multiplefeatures,andcomplex
features(e.g.,user-de�ned curves).

Oneinherentadvantageof deploying F+Ctechniquesin volumevi-
sualizationis thatmostvolumeobjectsto bevisualizedarefamiliar to
theviewers. It is relatively easyto establisha perceptive view of the
contextual partsof anobject,evenwhenit is peeledopenor exploded
apart. Henceit remainsan interestingconceptualconundrumanda
technicalchallengewhetheror not illustrative deformationcanbeef-
fectively deployed asa F+C techniquefor dataobjectsthat aremore
abstractor unfamiliar to theviewers. Answeringthis conundrumand
addressingthischallengeis themainmotivationof thispaper.

3 FOCUS AND CONTEXT IN ILLUSTRATIVE DEFORMATION

In illustrative deformation,a F+C visualizationis theproductof a se-
riesof transformationson graphicalprimitives. In Section4, we will
describea generalizedtechnicalframework for accommodatinga va-
riety of suchprimitivesfor representingcontinuousaswell asdiscrete
datato be visualized. For F+C visualizations,onecanconsiderthe

context

occluded focus

Original Object Rigid Deformation Elastic DeformationOptical Transformation

(a)BasicTransformations

Deemphasize Deformation Highlight Deformation Rigid Deformation Elastic Deformation

(b) Deformation (c) Deformation
with Context Mark-up withoutFocusPreservation

Fig. 1. Taxonomy of Illustrative Deformation Tools.

following typesof transformations.
Geometric Transformation: It causeschangesto the shapeof an
objectby applyingdeformationto its geometryin objectspace.The
deformationcanberigid or elastic.
Optical Transformation: It causeschangesto the appearanceat-
tributes(opacity, color, texture)of partsof anobject.Making partsof
anobjectdisappearingis alsoconsideredasanoptical(ratherthange-
ometric)transformation.Thus,cuttingplanes[30], ghostedviews [2]
andimportance-drivenrendering[28] areall opticaltransformations.
Viewing Transformation. It causeschangesto the viewing system
and cameraparameters,resulting in somevisual distortion, for in-
stance,�sheyeviews[21] andmagni�cationlenses[15,29]. In princi-
ple,viewing transformationscanbeseenasrestrictedgeometrictrans-
formationin imagespace.Becauseits co-existencewith object-space
geometricdeformationin the samevisualizationmay leadto confu-
sion,wedonotconsidersuchtransformationin thispaper.

Fig. 1(a) shows an abstractrepresentationof two typesof trans-
formation,geometricdeformationandoptical transformation.In this
paper, we discusstheeffectsof combiningthe two typesof transfor-
mationsin orderto obtainaneffective andunambiguousF+C visual-
izationinvolving deformation.Theambiguitytypically arisesfrom the
dif�culty in comprehendingtheoriginal geometryof thekey features
in focus.Henceit is necessaryto ensurefocuspreservation, suchthat
no geometricor optical transformationis appliedto the partsof the
object in focus. As illustratedin Fig. 1(c), without a preservingthe
geometryof the focus,thegeometricintegrity of visualizationwould
becompromised.Theambiguitycanalsoarisefrom theconfusionbe-
tweenfocusandcontext, andnot knowing whathasbeentransformed
geometricallyor optically. Henceit is necessaryto markup thecon-
text, or partsof the context closeto the focus,to illustratethe trans-
formed context. Fig. 1(b) shows two examplesof marking-upthe
deformedcontext by usingoptical transformationfor deemphasizing
andhighlightingrespectively.

In thefollowing subsections,weintroducethenotionof focusof at-
tention(FoA), which facilitatesfeature-sensitivetransformationwith
bothfocuspreservationandcontext mark-up.

3.1 Focus of Attention (FoA)

Themostimportantgoalof aF+Cvisualizationbasedondeformation
is to focustheviewer's attentionon certainfeaturesof interest.Focus
of Attention(FoA) de�nes a region of a datadomain,or a featureof
a dataobject,which is of particularinterestin dataexplorationand
will remainuntransformed(geometricallyor optically) during defor-
mation.Similar to thecolor andopacityspeci�cation,anFoA canbe
de�ned via a transferfunction, typically, H : R ! R, or scalar�eld
H : E3 ! R, whereR denotethe setof all real numbersandE3 de-
note3D Euclideanspace.We call H the Levelsof Desired Attention
(LDA). The former implies the dependenceof an FoA to the values
of thedatasetconcerned,whilst the latter removessucha restriction,
allowing anFoA bede�ned in many differentways(e.g.,interactively
by theviewers,or dynamicallyby a computational-steeringmonitor).
In the following discussions,we assumethat H is a scalar�eld, and



refertheLDA valueatp;p 2 E3 asH(p) directly. Without losinggen-
erality, we alsoassumethat the valuesof H fall in the subdomainof
[0;1].

The valuesof H are typically divided into threeranges:H(p) 2
[0;cFoA] [ (cFoA; fFoA) [ [ fFoA;1], where0 � cFoA � fFoA � 1. All the
pointswith H(p) 2 [ fFoA;1] aresaidto bein thefocus, andnogeomet-
ric andoptical transformationshouldbe appliedto thesepoints. All
thepointswith H(p) 2 [0; fFoA) aresaidto bein thecontext, andthey
canbetransformed.Thevaluesin thesecondinterval (cFoA; fFoA) in-
dicatethosepointsin a transitionalcontext region,whicharetypically
neededto be marked up to alleviate the potentialambiguityor con-
fusion. A weightingfunctioncanthusbede�ned basedon H(p), for
example,as:

h (p) =

8
><

>:

0 H(p) 2 [0;cFoA]
H(p)� cFoA
fFoA� cFoA

H(p) 2 (cFoA; fFoA)
1 H(p) 2 [ fFoA;1]

(1)

This exampleweightingfunction,h (p), speci�eslinearly thelevel
of context marking-upin the transitionalcontext region. Non-linear
functionscanalsobede�ned in asimilarmanner.

3.2 Focus Preser vation

There are a number of approachesto de�ne deformationsin 3D
space.Most surface-baseddeformationapproachesuseexplicit for-
ward transformationof vertices. In forward deformation,preserving
thefocusis aneasytask,andcanbedoneby modulatingthetransfor-
mationwith the weightingfunction h . However, volumetricobjects
aretypically deformedusinganinversetransformation.Hereweshow
how focuspreservationcanbeachievedwhende�ning deformationas
aninverseoperation.

The 3D displacementmappingintroducedin [7] offers a power-
ful andef�cient technicalframework for geometrictransformation.It
can facilitate rigid as well as elastic transformation. However, un-
like [7, 8], this work hasextendedthis framework signi�cantly to ac-
commodatea moregeneralde�nition of multiple anddynamicFoA,
discretedataandmulti-spacedeformation(seeSection4 for details).
An elasticdeformationcan be de�ned as an inversetransformation
T : E3 7! E3:

T(p) = p+ D(p) (2)

for eachpoint p 2 E3, whereD : E3 7! R3 is a 3D displacementmap.
This de�nition can also be usedto representrigid transformations.
However, for rigid transformations,a more compactrepresentation
(usinga rotationmatrixanda translationvector)is preferred.

Thepreservationof thefocuscanbeachievedgeometricallyby ap-
plying:

T(p) = p+ (1� h (p))D(p) (3)

This ensuresthat the transformationis injective for the points in
focus,which is critical to the visualization. A given samplingpoint
x in the focus will be mappedto a distinct x0 = T(x) because1 �
h (x) = 0. However, the transformationis not injective for thepoints
in context, and it may happenthat a samplingpoint in the context
mapsto a point in the focus,which is undesirable.This may occur
whenh(p) = 0, but h (T(p)) = 1. To alleviatethis,onemaycarefully
designtheweightingfunctionbasedonH, sothatapointin thecontext
is not mappedinto the focus, for example,by usinga distance�eld
representationof thefocusregion.

We alsode�ne focuspreservationasanopticaltransformation.We
usetwo �eld representationsasagenericform for anopticalspeci�ca-
tion (e.g,colorandopacity)of anobject:Fc : E3 ! [0;1]3 to denotethe
originalcolorspeci�cation,andFa : E3 ! [0;1] to denotetheoriginal
opacityspeci�cation.Bothcanbecaptured,simulatedor derivedfrom
theoriginaldatavaluesusingtransferfunctions.Theconventionalde-
formation,suchas for surgical illustration [7], normally assuresthe
preservationof opticalspeci�cationfor all pointswith:

c(p) = Fc(T(p)) ; a (p) = Fa (T(p))

(a) (b)

(c) (d)

Fig. 2. Illustrative Deformation of a Tornado Dataset. Top: Here, the
context regions are simply de�ned by splitting the volume along a verti-
cal line. Bottom: The contextual regions are de�ned by splitting along a
user-drawn line that matches the shape of the focus.

wherec(p) anda (p) arethecoloradopacityto bedisplayedatp.
Let Ccon(p) andacon(p) be the transformedcolor andopacityfor

thepointsin thecontext. Their speci�cationcanbetheoriginal repre-
sentationsFc andFa , or mark-upfunctionsasde�ned in Section3.3.
Then,thecolorandopacityto bedisplayedatasamplepointp are:

c(p) =

(
Fc(p) h (p) = 1
h (p)Fc(p) +

�
1� h (T(p))

�
Ccon(T(p)) h (p) < 1

(4)

a (p) =

(
Fa (p) h (p) = 1
h (p)Fa (p) +

�
1� h (T(p))

�
acon(T(p)) h (p) < 1

(5)

Notethat thecolor is preserved,asc(p) = Fc(p), for pointsin thefo-
cus. Moreover, it ensuresthat points in full context arenot mapped
back to the focus. In suchcases,h (p) = 0. When h(T(p)) = 0,
c(p) = Ccon(T(p)) , which is thecontext region,andwhenh(T(p)) =
1, a (p) = 0, which denotesemptyspace.On the otherhand,points
in thetransitionalregion resultin a blendingof thedeformedandun-
deformedpositions. In this case,the focus and the context sharea
transitionregion,which is blendedoptically. Althoughsomepointsin
thetransitionregion maybemappedto pointsin thefocal region, the
result is visually acceptable,asit depictsthe FoA andthe context as
having a fuzzyboundary.

3.3 Conte xt Marking-up

Simply preservingcolor andopacityof all partsof an objectmay be
alright for applicationssuchassurgical illustration,but it is certainly
not adequatefor illustrative deformationof objects(e.g.,a �o w �eld
and a graph) that are not intuitively recognizablein real life. It is
therebynecessaryto distinguishuntransformedfocusregion from the
transformedcontext region. Sincemaintainingthevisual integrity of
the focus region cannotbe compromised,it is best to mark up the
context region.

Mark-upeffectscantake many differentforms,includingbothop-
tical andgeometrictransforms.Whenalleviating theambiguitydueto
deformationis themainconcern,opticaltransformationcanbeusedto
highlight or deemphasizethedeformedcontext region. Typical high-
lighting effects include introducingeasily-recognizablecolors (such
asbright primecolors)andincreasingopacityof pointsin the transi-
tional context region. On thecontrary, typical deemphasizingeffects
are transformingcolor huestowardsblandcolors (e.g. grey), or in-
creasingtransparency. Examplesareshown in Fig. 4 andFig. 10,
wherethedeformedglyphsarerenderedmoretransparently.

Let Mc andMa begeneralmark-upfunctionsfor color andopacity
respectively. Let w(p) 2 [0;1] beaweightingfunctionthatdetermines
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the desireddegreeof mark-up. Then,the color andopacitytransfor-
mationsfor thecontext are:

Ccon(p) = (1� w(p))Fc(p) + w(p)Mc(p)
acon(p) = (1� w(p))Fa (p) + w(p)Ma (p)

An exampleweightingfunction is basedon amountof deformation,
e.g.,w(p) = jjT(p) � pjj , wherejj � jj denotesvectormagnitude.

4 A GENERALIZED DEFORMATION FRAMEWORK

In visualization,dataandmodelsareusuallyrepresentedby volumes,
surfaces,lines,glyphsandpoints. Volumesdiffer from othersin that
no geometryis given explicitly. Insteadeachvolumede�nes a con-
tinuousspatialsubdomain,whereevery point is associatedwith one
or morevalues,which may encodecolor, opacity, and implicit geo-
metric information,or canbe usedto derive suchinformationusing
transferfunctions. Our previouswork on deformation[7, 8] wasde-
signedfor suchdatarepresentationsin medicalillustration. On the
other hand,datarepresentationscomposingdiscrete primitives such
aslines, glyphsandpointsaremuchmorecommonin scienti�c and
informationvisualization.For suchexplicit representations,geomet-
ric andoptical transformationsaretypically appliedto the low-level
primitives,suchasvertices,andareinterpolatedalongthehigh-level
primitivessuchasfaces.However, it is dif�cult to maintaingeometric
integrity andmarkup contextual informationwithout incurringcostly
intersectioncomputationand neighborhoodsearch. Our aim to ex-
tendtheapproachof illustrative deformationfor dataexplorationin a
broaderrangeof applicationsledusto developageneralizeddeforma-
tion framework thatcanwork with discreteaswell ascontinuousdata.
This framework is depictedin Fig. 3, asthecompositionof multiple
geometricandoptical transformationson samplingpointsp. These
pointsaredeformedvia a displacementmapor procedure,thensam-
pled accordingto a volumerepresentation(which canbe an implicit
representationof linesandpoints)and�nally classi�edvia anoptical
operator.

4.1 Composite LDA

Section3 considerstheuseof a singleFoA de�ned by a singleLDA
function. In many situations,usersmaywish to have multiple LDAs
to in�uence the samevisualization. Somemay be feature-sensitive
(e.g., de�ned using a transferfunction), and othersmay be region-
based(e.g.,speci�edby theuserdynamically).Fig. 3 shows theover-
all technicalframework of our implementation.Thelower partof the
diagramshows a setof paralleloperationsfor realizingcompositeil-
lustrative deformationbasedon multiple LDAs, H1;H2; : : : ;Hn, each
of which is associatedwith a focus weighting function h i(p) and a
context weightingfunctionzi(p); i = 1::n. As mentionedin 3.1,with a
singleLDA, we normallyhave z(p) = 1� h (p). However, this is not

adequate.For multipleLDAs, weuseamorecomplex condition:

n

å
i= 1

hi(p) +
n

å
i= 1

zi(p) = 1; 8p 2 E3

ConsiderthateachLDA Hi is coupledwith ageometrictransformation
Ti , wecangeneralizeEqs.4 and5 as:

c(p) =

(
Fc(p) 9i;hi(p) = 1
å n

i= 1
�
hi(p)Fc(p) + zi(Ti(p))Ccon(Ti(p))

�
8i;hi(p) < 1

a (p) =

(
Fa (p) 9i;hi(p) = 1
å n

i= 1
�
hi(p)Fa (p) + zi(Ti(p))acon(Ti(p))

�
8i;hi(p) < 1

Fig. 2 showsadeformationof thetornadodatasetusingaLDA de�ned
in termsof thevector�eld magnitude.This is mappedontoonefocus
weightingfunction,ha, for thecentralcoreof thedata,andtwo con-
text weightingfunctions,za andzb, for thetwo halvesof thevolume.
Wecanfeedha andza into onepipelinein Fig. 3, andzb into another.
By moving the contextual partsin oppositedirections,we achieve a
split. Thebottom�gure depictsthecasewherethecontextual regions
arede�ned asthetwo halvesat eithersideof a user-drawn curve that
matchestheshapeof thefocus.Theeffect is abetterview of theFoA.
Theadvantageof de�ning thecontext with multiplezi is theability to
applydeformationto differentpartsof thecontext individually. For ex-
ample,Fig. 10 shows a F+Cview of a 3D scatterplot, wheretheFoA
is the region alongthe middle part of the plot. Two context regions
deformin theoppositedirectionduringa splitting operation.A more
complex exampleof multiple LDAs is shown in Fig. 10(e),wherea
global zoomingoperationis employed to explore the data,anda de-
formationis appliedto the context to neutralizethe zoomingeffects
on thecontext.

4.2 Implicit Glyphs and Lines

In visualization,renderingthe explicit representationsof glyphsand
linesis still thepredominantapproach.Becauseof thepowerful capa-
bilities of thecurrentGPUtechnology, it hasbeenpossibleto render
discreteprimitivesin their implicit representations.In this work, we
considerlines andglyphsasimplicit functionsde�ned in a volumet-
ric domain,which canbedeformeddirectly usingspacewarpingand
renderedusingavolumerenderer. Onesuchimplicit functionis adis-
tance�eld, wherevoxels storethe Euclideandistanceto the closest
primitives. In thecaseof a setof points,animplicit functionencodes
thegeometryof thecorrespondingspheressurroundingthepoints;and
in thecaseof asetof streamlines,animplicit functionencodesthege-
ometryof thecorrespondingstreamtubes.This approachcanalsobe
extendedto other datarepresentationsinvolving discreteprimitives.
For instance,interactive deformationof implicit meshes,useful for
therenderingof isosurfaces,hasbeensuggested[9]. Nevertheless,the
generationof implicit representationsof linesandpointsis very fast,
in comparisonto arbitrarymeshes.Timing resultsfor generative and
renderingof theseimplicit representationsaregivenin Section6.2.

Let f (p) be the implicit representationof a setof lines or points.
An exampleis thedistance�eld, wherevoxelsstoretheEuclideandis-
tanceto theclosestline or point. Renderingof deformablestreamtubes
or sphericalglyphsof a speci�c radiust is doneby using the con-
ventionalopacitytransferfunction: O(p) = u

�
t � f (p)

�
whereu(x)

is typically a unit stepfunction. An exampleof applyingillustrative
deformationto a set of streamtubesis shown in Fig. 4, wherewe
comparedifferentdeformationandopticalmark-upmethods.

Withoutavery�ne samplinginterval, thevolumerenderingintegral
typically givesrise to amorphouslineswith fuzzy boundaries.While
this effect canbe useful for markingup contextual information,it is
not desirablein situationswheresolid streamlinesproducemoreef-
fective visualization. For solid streamlines,we hencesearchfor the
intersectionswith speci�c isosurfacesof thedistancevolume,instead
of doingcompositing.This is achievedby samplingthevolumeuntil
reachingthezero-sett � f (T(p)) = 0, for eachsamplepointp.



(a) (b) (c) (d) (e)

Fig. 4. Deformation to the stream tubes of the blunt �n dataset, with FoA de�ned to preserve the stream lines on the left (a) Original dataset (b)
Optical transformation only (c) Optical transformation and rigid deformation (d) Optical transformation and elastic deformation (e) Without discrete
FoA deformation, stream tubes are cut, making it dif�cult to understand.

Althoughdiscretedatais oftenrepresentedanddeformedexplicitly,
therearea numberof advantagesfor performingit implicitly: (1) It is
easierto incorporatevolumetricdata,suchasregisteredMRI for the
caseof �ber tracts(Fig. 7), or vector�eld magnitudefor thecaseof
�o w visualization(Fig. 2). (2) It is fasterto incorporatesoft shadows,
necessaryfor betterdepth,motionanddeformationcueing,asshown
in Fig. 5. (3) Controlling the thicknessof the glyph or streamtube
is a simple operation,which doesnot requireextra stepsto control
thesmoothnessof a mesh,and(4) It scalesbetterto largenumbersof
glyphs(up to millions). This approachscaleswith therenderingarea
insteadof the numberof glyphs,which makesit feasibleto rendera
large numberof glyphs at interactive rates. This observation is ex-
ploitedby theapproachin [13], wherea largenumberof particledata
is renderedin real-timeusingraytracing.

4.3 LDA Speci�cation for Discrete Data

Theabove speci�cationof theweightingfunctions,h (p) andz(p), is
not suitablefor discretedata. The applicationof suchan LDA may
result in breaksin the discreteglyphs. Althoughcuttingstreamtubes
for �ber trackingis reminiscentof thephysicalcuttingof whitematter
tracts,it is not desirablefor �o w or graphvisualization.To consider
thediscretenatureof data,we make useof a labelingscalar�eld, L,
whereeachvoxel hasa uniqueidenti�er of the closestline or point.
The speci�cation of an LDA is thusbasedon L ratherthan the im-
plicit function representingthe discretedata. From L, we cancreate
a look-up table,P, which mapseachuniquelabel to a 3D reference
point associatedwith the correspondingglyph. For example,for the
caseof a sphere,we useits centerasthe referencepoint, while for a
streamtube,weuseits geodesiccentroid.

Thisgivesanew form of LDA asG(p) = P(L(p)) , whichis referred
to asdiscreteLDA. From G(p), we canderive h (p) andz(p) in the
samewayasdiscussedin previoussections.

An exampleis shown in Fig. 4(d),whereadiscreteLDA is de�ned
for the blunt �n dataset.In comparison,without discreteLDA (Fig.
4(e)),streamtubesarebroken. Theapplicationof Eq. (5) worksonly

Fig. 5. Illustrative deformation of stream tubes with soft shadows.

for the caseof composition.For direct renderingstreamtubesby in-
tersectingwith thezero-setof animplicit representationf , a different
approachmustbetaken. We hencesplit f into two implicit represen-
tationsfor thefocusandcontext respectively:

fF (p) =

(
t � f (p) x (p) � 1� e

� fmax x(p) < 1� e
; fC(p) =

(
� fmax x(T(p)) � 1� e

t � f (T(p)) x (T(p)) < 1� e

wherex(p) = h (G(p)) is a weighting function for a discreteLDA,
fmax is themaximumdistanceto thefocusof attention,ande (typically
0), is athresholdvalueto accountfor precisionerrorsin theraycasting
process.Then,weobtainadiscreteF+Cvisualizationby samplingthe
combinedimplicit representation

g(p) = min( fF (p); fC(p)) (6)

An examplecanbeseenin Fig. 5.

4.4 Multi-space Deformation

Conventionally, the geometricentitiesof illustrative deformationare
de�ned usingthesamecoordinatesystem.In thecontext of deforma-
tion, wecanconsiderthreedifferentcoordinatesystems:
Xv: thevisualor renderablespace,usuallyde�nedwith aproxygeom-
etry.
Xd: deformationspace,usuallyde�ned asadisplacementmap.
Xo: originalobjectspacefor continuousor discretedata,oftende�ned
asa rectilinearspacefor storageasa3D texture.

Therefore,we cande�ne the following mappingsbetweenthedif-
ferentspaces:Wv;o : Xv 7! Xo, Wd;o : Xd 7! Xo andWv;d : Xv 7! Xd, and
amulti-spacedeformationis de�ned as:

T(p) = Wv;o(p) + Wd;o
�
D(Wv;d(p))

�
(7)

Fig. 8 shows anexampleof videovisualization,wherethe3D video
volumeis renderedinto a torusspaceto betterusethe screenspace
[10]. Becausetheoriginal dataandthedisplacementarede�ned asa
3D texture,thenWv;o = Wv;d aremappingsfrom toroidalto rectilinear
spaces,while Wd;o is theidentity transformation.

5 APPLICATIONS

We examinebelow theuseof illustrative deformationin differentap-
plicationdomains.

5.1 Flow Visualization

Flow visualizationis essentialfor theunderstandingof thedynamics
of �uids and gasesby representingthe movementof particlesvisu-
ally. Flow information is usually representedin a volume by sam-
pling the velocity vectorsin a regular grid at different momentsin
time. However, visualizingoverall movementis complicateddueto
thelargeamountof information.For this reason,a numberof mecha-
nismshave beenwidely used,suchastheexplicit renderingof stream



lines,ribbonsor tubesto depict�o w path,or theuseof LinearIntegral
Convolution(LIC) [23]. A challengein bothapproachesis visualizing
internal3D �o w. Fig. 2 showsanexampleof �o w visualizationof the
tornadodatasetusingLIC textures.We make two importantconsider-
ationsfor ensuringthatdeforminga �o w doesnot leadto misinterpre-
tation of data. (1) We avoid cutting throughthe �o w. In the caseof
streamtubes,this is achievedwith discreteFoAs, asdepictedin Fig.
4. (2) We renderdeformeddatawith optical transformations,so that
is understoodasameansfor context information.

In anotherexperiment,wedeformeddatafrom aplasmaturbulence
simulation.Interestingly, theuseof acontinuousFoA de�ned radially
alongthecenterlineof thetorus,providesaF+Cview of �ux surfaces,
which are of interestto scientists. Examplescan be shown in Fig.
6. By controlling theradiusof theFoA, it is possibleto interactively
explorethedifferent�ux surfaces.

Fig. 6. Deformation of Plasma Turbulence Data. The use of FoA de-
�ned radially from the centerline of the torus provides a F+C view of �ux
surfaces.

5.2 Fiber Tract Visualization

Anotherapplicationof deformationof implicit lines is the visualiza-
tion of white mattertractsin thehumanbrain. Theseareusuallyob-
tainedfrom diffusion tensormagneticresonanceimages.Visualizing
DTI datasetsis useful for understandingthe directionalqualitiesof
brain tissue,andmostcommonapproachesuseglyphsor streamlines
[31]. Fig. 7 shows cutting throughthe corpuscallosumto visualize
the internal �ber bundleson onebrain hemisphere,which otherwise
areoccludedby theotherhemisphere.We founddeformationvery in-
tuitive in this case,as it is reminiscentof physical cuts that may be
performedonspecimens.

Fig. 7. Deformation of Fiber Tracts from Diffusion Tensor Imaging. Fiber
Tracts are depicted as streamtubes, which can be cut and deformed
interactively.

5.3 Video Visualization

Videovisualizationis avisualprocessfor extractingmeaningfulinfor-
mationfrom a videosequence.It wasintroducedby DanielandChen

as a mechanismfor showing moving imagesin a static 3D volume
[10]. In general,a videocanbeunderstoodasa 3D volumeby using
the time dimensionasa spatialdimension. Using volumerendering
techniques,it is possibleto have a depictionof the entirevideo in a
singleimage.Oneof theproblemswith thesetools is the inability to
show theoriginal framesandstill focuson anareaof interest,dueto
occlusion.Proposedsolutionsmake useof semi-transparentvolumes
derivedvia backgroundsubstractionof eachframe. This solutionre-
ducedtheamountof contextual informationthatcanbederivedfrom
thevisualization.In our approach,we solve this problemusingdefor-
mation,asdepictedin Fig. 8. Here,aretractingdeformationis usedto
manipulatethecontextual informationwhenvisualizingthesignature
of a personwalking. We alsodepicttheuseof multi-spacedeforma-
tion, in particular, the useof a toroidal shape,asproposedin [10]).

(a) (b)

(d) (e)

Fig. 8. Deformation in Video Visualization using a retracting deforma-
tion, depicted in (a), using multi-space deformation. (b)-(c) Rectilinear
coordinate system (d)-(e) Using Toroidal coordinate system. Wave de-
formation is used to mark up the contextual information.

5.4 Glyph and Graph Visualization

Anotherneedfor discretedatais in the visualizationof glyphs. 3D
glyphs,e.g.,spheres,areoften usedto representpointsin 3D space.
Herewe considertwo exampleapplications:thevisualizationof a 3D
scatterplot, wheresamplepointsareplottedin 3D usingthreecontin-
uousscalarsasspatialcoordinatesanda a fourth scalarascolor. Fig.
10showsascatterplot of datafrom thecosmologicalsimulationEnzo
[1]. TheX,Y,Z coordinatescorrespondto gasenergy, total energy and
densityof starparticles,while colorrepresentstemperature.A discrete
FoA is usedto split thedatasetandfocusonaclusterof interest.

In graphvisualization,verticesin a graphcan be representedin

Fig. 9. Deformation of a Hyperbolic graph and a multi-tier graph using a
bending transformation.



Fig. 10. Scatter Plot Visualization with Interaction Widget (inset). (a)-(c) Sequence for splitting while preserving FoA (de�ned along the center of
the split). (d) Rotation can be used to select the region of interest along a different dimension. (e) Scaling of the FoA helps to get a better view.

a similar fashion. Deformationof edges,however, cannot follow
the sameseriesof transformations,since it is undesiredto cut an
edge. Instead,we deform vertices and edgesindependently, and
we use an algebraicoperationto combinethe result of both, as :
c(p) = Cv(Tv(g(p))) + Ce(Te(p)) whereCv andCe areoptical trans-
formationsfor verticesand edges,respectively, while Tv and Te are
deformations.Te differs from Tv in that it mustbecontinuous.In ad-
dition, verticesaretransformeddiscretely, asde�ned in Section4.3.
Fig. 9 shows two examplesof deforminga hyperbolicgraph,anda
multi-layeredgraph.

6 IMPLEMENTATION

Our approachcanbe incorporatedin mosttraditionalvolumerender-
ing systems.The algebraicoperationsdepictedin Fig. 3 canbe im-
plementedas a multi-passprocessin most contemporaryvisualiza-
tion processes,or, with theaid of theGPU,in a single-passfragment
shader. Eachstepin theprocess,identi�ed asaboxin Fig. 3, is afunc-
tion that applicationdeveloperscanmodify to suit their own needs.
In our particularimplementation,we useGPU-basedraycasting. It
provesto beamore�e xible approachthanslice-basedvolumerender-
ing, asit enablesusto useadaptive samplingof thevolume,essential
for therenderingof deformablestreamtubesandglyphs.

6.1 Interaction Issues

One of the goalsof our work is to make our approachinteractive.
As the complexity of the illustrative deformationandthe sizeof the
datasetgrow, it becomesimportantto useprogressive sampling. We
exploit dynamicbranchingcapabilitiesof new GPUsto allow variable
samplingratesof the volume. Low resolutionis usedwhenthe user
changestheview or thedeformationparameters,andhigh resolution
is activatedoncethe userstopsinteracting. Thereare a numberof
technicalchallenges,including handlingobjectsin 3D spaceandthe
interactionwith complex transferfunctions.Becausethereis a lot of
researchdevotedto handlingtransferfunctions,we focusin two new
interactionchallengesintroducedby our framework: (1) manipulating
the deformationspaceand(2) presentinginteractionfeedbackto the
user.

Interactionwith the deformationparametersis doneby applying
rotationsand translationsto the deformationspace. By moving the
deformationspace,theusercanremove certainpartsof anobject,or
de�ne the FoA. However, this processis a complex taskasthe user
only perceivestheeffectsof deformation,ratherthanthedeformation
itself. For this reason,weprovidea“widget” view of thedeformation,
which appearsasa volumetric icon of the deformation. The icon is
automaticallygeneratedfrom thedisplacement,by deforminga volu-
metriccube.A numberof widgets,color codedaccordingto theaxis
of rotation,allow the userto rotatethe deformationalonga speci�c
axis. A wireframebox is alsousedto depict the objectspace.Fig.
10 depicta seriesof deformationson a 3D scatteredplot, obtainedby
translatingandrotating the deformationspace.Note the changesin
theiconwidget.

Anotherimportantaspectis the provision of interactionfeedback.
Becauseour approachdoesnot incorporateadditionalmodesof inter-

action,suchashapticor auditive, we rely on visualcuesto represent
interaction.Onesuchcueis theuseof deformationarrows,whichrep-
resenttheprincipaldirectionof thedeformationastheusermovesthe
deformationspace.Weautomaticallyobtainthedirectionof deforma-
tion from thedisplacement�eld D. To avoid clutter, weonly show the
arrows correspondingto a planein the directionof the movementof
the deformationplane. An exampleis shown in Fig. 10(b,c),where
the usertranslatesthe deformationin the z-direction, to control the
amountof the splitting. The directionandmagnitudeof the arrows
representthedirectionandamountof deformation.

6.2 Prepr ocessing

To handlediscretedata(suchaslinesandpoints)in ourframework,we
cangenerateimplicit representationsof suchdatasets.As describedin
Section4, thereareanumberof advantages,sincetheprocessfor gen-
eratingan implicit representationis very fastandcanbe performed
seamlessly. By exploiting GPU programmability, it canbe included
in the renderingpipelineby interceptingthe renderingprimitivesbe-
fore they are sentto the rasterizationprocess. For this reason,this
preprocessof discretedatadoesnot hinder the generalityof our ap-
proach.In this paper, we developedan implicitization processon the
CPU,whichcomputesthedistance�eld of anobjectonly in thevicin-
ity of the pointsandlines. In our experiments,we computeda 2563

implicit representationof 10000and100000points,which took0.487
and3.4sec.,respectively. For lines,10000and100000line segments
took 2:887 and31:287 sec.,respectively. Thesevaluesareobtained
usinga CPU-only implementationon a XEON 2.4 Ghz laptop. We
believe that theprocesscanbeacceleratedconsiderablywith a GPU-
implementation,sothatit canbeusedin real-time.Thisis of particular
interestfor time-varying particlesystemsor �o w simulations,where
pointsandstreamlineschangedynamically. Anotheradvantageof us-
ing implicit representations,is that renderingscalesbetterfor a large
numberof glyphs. In our experiments,10000arerenderedusingex-
plicit representationsin about0.3(low quality)to 1 sec.(highquality).
100000glyphsarerenderedat about3 sec.perframe.In comparison,
our implicit renderertakesfrom about0.2sec.(in theinteractivemode
usingprogressive sampling)up to 1:8 sec.(in high-qualitymode),for
aviewpointof size512� 512,regardlessof thenumberof points.

6.3 Evaluation

We experimentedwith a numberof datasets,rangingin sizefrom 643

to 2563. Weobtainedinteractiveresultsfor all ourdatasetsonaXEON
processorwith a QuadroFX 4400GPU,usinga 512� 512viewport
anda samplingdistanceof d = 1 voxel. In our case,a comparative
evaluation is more informative. Table 1 shows the comparisonbe-
tweenour differentmethodsvs. a basicrenderingsystem.We com-
paredfor the caseof volumerendering,e.g.,Fig. 4 andthe caseof
implicit renderingvia ray intersection,e.g.,Fig. 5. Progressive sam-
pling is usedwhen the useris interacting,for d = 4, resultingin a
four-fold improvementin performance(up to 20 fps). The overhead
on introducingdeformationand FoA will becomesmaller in future
GPUs. Interactivity canbe seenin the accompanying video andat :
http://www.caip.rutgers.edu/˜cdcorrea/deformation



Table 1. Summary of rendering time for different methods.
F+CMethod VolumeRendering(s) Implicit Rendering(s)
BasicRendering 0.132 0.075
Deformation 0.217 0.131
Deformationwith FoA 0.336 0.169
Deformationwith DiscreteFoA 0.399 0.279

7 VALIDATION AND CONCLUSIONS

Thesoftwaretool developedin this work wasdemonstratedto a num-
berof scientists,usingtheplasmaturbulencedataasanexample.Al-
thoughthescientistsdid notusethesystemdirectly, asit still requires
thestudyof effectiveinteractionwidgets,they wereenthusiastic.Con-
traryto ourinitial hypothesisthatscientistsmaybereluctantto deform
thedatafor fearof misinterpretation,they found it very intuitive and
did not raisedaconcernwith theconceptof deformationof theirdata.
In fact, they expressedinterestin focus-preservingdeformationsthat
allow themto visualizethe �ux surfaces,asdepictedin Fig. 6. They
alsosuggesteddeformationoperationswherethetorussurfaceis “�at-
tened” interactively, in order to visualizethe entire �ux surfacein a
singleview. In anotherinformalvalidation,imagesfrom thedeforma-
tion of DTI-based�ber trackingwaspresentedto two brainscientists,
who expressedinterestin our framework. They commentedon the
deformationof individual �ber bundlesasan interestingapplication,
which validatestheneedfor focus-preservingdeformation,especially
for discretedatasuchasstreamtubes.Although this wasan informal
validation,we werevery encouragedby thecomments.A full evalua-
tion is still an importantaspectthatneedsto beaddressedin thenear
future. This will be a time-consumingtask,asour framework spans
a variety of applicationswith very differentgroupsof users,eachof
whichmustbeanalyzedindependently.

Wepresentedanovel framework for dataexplorationthroughillus-
trative deformation,which combinesactive manipulationof the spa-
tial datawith opacityandcolor transformations.Our framework in-
corporatesthede�nition of opticaltransformations,suchascutaways,
ghostedviewsandclipping,with manipulationoperators,suchascuts,
explodedviews anddeformation,andcanbeappliedto bothcontinu-
ousanddiscretedata.We showedthegeneralityand�e xibility of our
approachthroughanumberof examples,including�o w visualization,
video visualization,�ber tractography, scatterplots and 3D graphs.
Initial commentsfrom scientistsandvisualizationexpertsareencour-
aging. We believe that illustrativedeformationis an importantaid in
dataexploration,whereactive “handling” of datais as importantas
active “viewing”, which hasbeenthepredominantparadigmin visu-
alization.
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